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The Use of Ada Packages,

A. N. Habermann
CMU, 14 November 1980

Abstract

The Ada language provides a facility for separating the specification of a program module from its

implementation. The purpose of this section is to show by examples that this device greatly enhances

system design.
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Introduction.

The Ada language provides three constructs for partitioning large programs into modules:

packages, tasks and subprograms. In this essay we will not treat subprograms as a separate

construct, because the subprogram construct is in fact nothing else than a special case of the

package construct. Normally, a package exports several functions and procedures. A subprogram is

a package that exports a single function or procedure. A package is typically used for grouping data

types and operations on objects of those types into a single unit. Tasks serve a similar purpose, but

also define the execution order of operations. In this first essay we focus our attention on the

organization of sequential programs. Tasks are discussed in a separate section in this document.

1 Package Specifications.

An Ada package consists of a visible part and, if needed, a package body, The visible part specifies

program objects such as constants, types and subprograms, while the package body describes their

implementation (see Ref.Man. Chapter 7: "Modules"). An example of a Package Specification is:

package IntegerPairs is

type pair is record xcomp, ycomp : integer; end record;

function assemble (p, q: in integer) return pair;
function "+" (p, q: in pair) return pair;
function "-" (p, q : in pair) return pair;
function "" (c : in integer, q : in pair) return pair;
-- this function defines scalar multiplication of the form "scalar pair"

end IntegerPairs;

This visible part specifies the program objects that this package provides to its surrounding scope

(see Ref.Man. Section 8.1: "scope of Declarations"). It defines the interface of this module with other

program modules and lists the program objects that it creates and that can be used by other modules.

Type "pair" is an example of an open type, which makes the structure of objects of this type visible to

its users. The functions are specified in sufficiert detail for users to write operations on pairs and

integers, but the implementation remains hidden from the users. The implementation is described in a

separate piece of program, the body of package IntegerPairs.

package body IntegerPairs is
<<< programs for functions assemble. "+ ", "-" and >>>

end Intege-rPairs;

S--~ ---- -- ~- - -
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It is not necessary that the implemetation body immediately follows the visible part of a program

module. Placing several visible parts together has the advantage that one can oversee the structure

of an entire subsystem and the facilities provided by its various modules. Having to look at
implementations is often confusing when the overall structure of a system is the issue.

The example shows how in Ada programs the specification of a program module is separated from

its implementation. In most other languages, a programmer is forced to interleave specifications and

implementations, and put them into a single mbdule. Not separating the two causes problemns for both

users and system designers. Without the separation, a user must search through the code of a
program module and find the parts relevant to his application. In this situation it is essentially up to

the user to decide which pieces of code he should consider as specification and which pieces he

should ignore as implemnentation detail. Such decisions are not only error prone, but often lead to

undesirable implementation dependencies between program modules. Such dependencies are not
explicitly visible in the program text and make it therefore extremely difficult to modify programs
without introducing new errors that are very hard to discover. The strict separation of specification

and implementation in Ada does not leave it up to the user to decide which piece of code is relevant.
The distinction is explicit in programs so that implementation details can be hidden from the users of a

program module.

For system designers the drawback of mixing specifications and implementations is that one is
* inclined to go forwards and backwards between design and writing code, instead of concentrating on

one or the other. We will show in this section that in Ada system design and writing code are very
distinct activities. The natural thing to do in Ada is first to write specifications for a collection of
interrelated program modules and then to write programs that implement these separate modules at

some later time. This simple device of partitioning a module in a specification part and an
implementation body is a powerful support tool for system design.
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2 Design by Similarity.

A common case of using package specifications is that of designing new packages by similarity.

We discuss two different ways of exploiting similarity:

1. design packages similar to an existing package;

2. design a template and introduce new packages as instantiations of that template.

We illustrate the ideas by introducing fractions, integer vectors and complex integers. The obvious

thing to do is to write three packages similar to the one for IntegerPairs.

package Fractions is

type fraction is record numer, denom :integer; end record;

function assemble (p. q in integer) return fraction;
function " (p, q: in fraction) return fraction;
function ... (p, q : in fraction) return fraction;
function (c : in integer. q : in flaction) return fraction:

-- this function defines scalar multiplication of the form "scalar ° fraction"
end Fractions;

package IntegerVectors is

type vector is record xcomp , ycomp : integer; end record;

function assemble (p, q: in integer) return vector;
function (p, q: in vector) return vector;
function ... (p, q :in vector) return vector;
function (c : in integer, q : in vector) return vector;

-- this function defines scalar multiplication of the form "scalar ° vector"
end IntegerVectors;

package ComplexIntegers is

type plexint is record re, im: integer; end record;

function assemble (p, q in integer) return plexint;
function " +" (p, q: in plexint) return plexint:
function (p, q: in plexint) return plexint:
function .. (c: in integer, q: in plexint) return plexint;

-- this function defines scalar multiplication of the form "scalar plexint"
end ComplexIntegers;
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The specification of all three packages is exactly the same as that of IntegerPairs. It is obvious that

the implementation of the three functions will be the same as that of IntegerPairs for packages

IntegerVector and ComplexIntegers, but not for Fractions. In the latter case addition and subtraction

should not be applied component-wise, while scalar multiplication should have an effect on the

numerator, but not on the denominator. IntegerVectors and Complexintegers can both use the scalar

multiplication of IntegerPairs which multiplies both components of a pair or vector or complex

number. In case the specification and implementation are the same (as is the case for IntegerPairs,

Integ ;Vectors and Complexlntegers) there is no need to write three separate packages. If package

IntegerPairs has been defined, all that is needed instead of two new packages is the pair of

declarations:

type IntegerVector is new pair;

type ComplexInteger is new pair;

This declar?'..- validates the operations defined in. package IntegerPairs also for objects of type

IntegerVector and of type ComplexInteger (see Ref.Man. 3.4 "Derived Type Definitions"). For

example,

declare x. y: ComplexInteger;
p, q : pair;

begin
x = assemble(3, 4):
y: = 2 * x + 3*assemble(5, 12);
p -= assemble(3, 4);

-- q:= p + x; is incorrect =) type violation.

end;

Note that one can derive one type from the other if and only if thp operations defined for those tYpes

are similar in the parameters they use and also in the way they work. Derived types not only use the

same specifications, but also the same implementations. The example of Fractions serves the

purpose of showing that packages may have similar specifications (have similar visible parts), but

cannot be derived from one another because of the different implementations (that must be written as

different package bodies). Packages IntegerPairs, IntegerVectors and ComplexIntegers can share a

common implementation body, but that of Fractions is not the same.

a?
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Instead of deriving IntegerVectors and Comlplexintegers from package IntegerPairs, one can first

define a package template that contains all the common elements of IntegerPairs, Complexintegers

and IntegerVectors. The three packages can then be defined as instantiations of this template.

A package template is defined by a gene,'ic package which has the same format as an ordinary

package except for a prefixed generic clause (see Ref.Man. 12.1. "Example of a generic package

declaration"). A generic clause is frequently used to introduce a formal type parameter. This is

particulariy useful If one wants to write a piece of program that should work for a variety of types. A

well-known example is that of a "stack" for which one defines the operations "push" and "pop", One

vwou!d like to define a stack package indeoendent of the stack element type so that one can introduce

stacks of reals, stacks of records or stacks of access variables without having to rewrite the code for

"push" and "pop" (see Ref.Man. 12.4).

We try to capture the commonality of IntegerPairs, IntegerVectors and ComplexIntegers by defining

a generic package "Pairs". The follov.ing definition is a first step in that direction, although the

generic specification is not complete.

generic type comp is private -- this generic clause is incomplete

package Pairs is

type pair is record xccord, ycoord comp; end record;

function assemble (p, q• in comp) return pair;
function " +" (p, q: in pair) return pair;
function "-' (p, q in pair) return pair:
function ." (c in comp, q :in pair) return pair;

-- this function defines scalar multiplication of the form "scalar * pair"
end Pairs:

The qualification private in the formal type definition means that the user can supply any structured

type he wants and that the generic package will not assume any particular structure. The generic

package will treat formal type "comp" and objects of that typ. as a black box. This implies a

restriction for the generic package in that it cannot directly access the structure of objects of the

formal type. That excludes a;: aray or record access to those objects in the code of the generic

package.
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The information that is missing in the generic clause has to do with operations that can be performed

on objects of the formal type "comp". When the functions "+","-" and "" are implemented, their

code uses the fact that elements of pairs can be added, subtracted and multiplied. It must be clear to

users of the generic package that the actual type he supplies when he uses the generic package must

be one for which addition, subtraction and multiplication are defined. It would for instance make no

sense to use type "stack" as the actual type for "comp", because addition, subtraction and scalar

multiplication do not make sense for stacks. The correct definition of generic package "Pairs" in Ada

is:

generic type comp is private;
with function "+ " (comp, comp) return comp;
with function "-" (comp, comp) return comp;
with function ". (comp, comp) return comp;

package Pairs is

type pair is record xcoord, ycoord : comp; end record;

function assemble (p. q: in comp) return pair;
function "+" (p. q : in pair) return pair;
function "-" (p, q: in pair) return pair;
function "" (c: in comp. q: in pair) return pair;

-- this function defines scafar multiplication of the form "scalar * pair"
end Pairs;

Generic package "Pairs" can be used to define IntegerPairs, two-dimensional vectors and complex

numbers. The use of a generic package has the additional advantage that we can define vectors of

various component types if we want to.

package IntegerPairs is new Pairs (comp is integer);

package Vectors is new Pairs (comp is digits 7);

package Complex is new Pairs (comp is digitz 9);

package ComplexVectors is new Pairs (comp is Complex.pair);

The latter defines two dimensional vectors of complex numbers. Note that "pair" as declared in

package Pairs by itself is not a type, but a template for a type. When package Pairs is instantiated.

Sa s in the definitions above, a new type is created by making a copy of the declared template. The four

definitions above introduce four distinct types: IntegerPairspair, Vectorspair, Complex.pair and

Complex Vectors.pair.
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Other operations on these types of objects can be defined in additional packages. For example,

package ComplexOps is

use Complex;

function "" (p. q : in pair) return digits 9: -- inner product
function modulus (p: in pair) return digits 9;

end ComplexOps;

The name pair in this example means Complex.pair, the type that is defined as part of package

Complex (see Ref.Man. Section 8.4 "Use Clauses.").

Note that, again, a package Fractions cannot be defined with what we now have. The same

problem arises as before because of the different implementations needed for the operations on

fractions. A generic package body satisfying the net ds of complex numbers and vectors does not

provide the correct implementation for fractions. No matter how similar the specifications. it is

necessary to define a separate package for Fractions.

package Fractions is

type fraction is record numer, denom: integer; end record;

function assemble (a.b : in integer) return fraction;
function +" (p, q in fraction) return fraction;
function "- (p, q :in fraction) return fraction;
function . (p, q ' in fraction) return fraction;
function recip (p: in fraction) return fraction;

end Fractions;

package body Fractions is

<<<implementation of "+ ', "-", .. , assemble and recip for fractions>)>

end Fractions;

The examples of this section show that one can go through a fair amount of design without

considering implementation details. It is typical for a designer to come up with an initial design and

then consider revisions according to the insight gained by doing the initial work. This section

demonstrated the use of package specifications for expressing such design decisions.

'I
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3 Specialization of General Packages.

Another common case is that of designing special versions of a given package. If the latter

provides a collection of primitive types and basic operations, its application may be inconvenient and

cumbersome in specific cases. It is for instance undesirable to force users to make use of general file

facilities for terminal I/O, It is customary that the programming environment automatically creates

access to screen and keyboard without requiring the user to open files for these devices. The

programming environment also makes it unnecessary for users to indicate in every read or write

operation that screen or keyboard is used as I/O device. One expects to find special versions for

reading the keyboard and writing the screen. The purpose of this section is to show the use of Ada

packages for introducing specialized versions of a given set of primitive facilities.

The goal of the following exercise is to design special versions of a general mailing system. Let us

assume that messages are defined by a package MSG:

package MSG is

subtype amount is integer range 0.. integer'last;
type content(size: amount); -- incomplete type declaration
type message is access content;
type content(size: amount) is

record
sender string(1 .. 12);

date string(1 .. 8):
text string(1 . .size);

next message;
end record;

end MSG;

The need for an incomplete type declaration is explained in Ref. Man. 3.8, "Access Types".

Messages can be created dynamically by assigning the designator returned by allocator "new

content(something)" to a variable of type message. For example, a collection of five messages of

equal size is generated by the subprogram:

declare x: message : = new content(120);
begin

for q in 1 .. 4 loop
x.next: = new content(120); x = x.next;

end loop;

end;

*1

- -.--- -!-- .



a.nh 14 November 1980 Ada Packages page 9

A general mail facility is described by the visible part of packa ge MailSystem:

package MailSystem is
use MSG;

type mailbox is private;

procedure deposit (m: in message: box: inout mailbox);
-- add new last message to box

procedure receive (m: out message; box : inout mailbox);
-- take first message out of box

procedure clear (date : in string: box : inout mailbox);
-- remove all messages up to "date"

procedure remove (sender: in string; box : inout mailbox);
-- remove all messages from "sender"

function boxsize (box : in mailbox) return MSG.atnount;
function lookup (sender : in : box : in mailbox) return mailbox:

-- duplicate all messages from user in new box

private
type mailbox is record first. last : MSG.message; end record;

end MailSystem:

The first special function is one for a mail system defined for a static number of users. Each user has

exactly one mailbox which exists as long as the user wants. Since every user has a unique mailbox, it

is no longer necessary to address a particular mailbox. A userlD can be used instead. The package

body of the special version we are designing manages an array of mailboxes and selects a particular

mailbox by using a userlD as index. (The example is somewhat simplistic, because no protection is

built in against users that make unauthorized use of somebody else's userlD.)

package StandardMail is
use MSG;

maxuser: constant : = 81;
type userlD is new integer range 0.. maxuser;

function get;r0 return userlD;
procedure rolea-elD (x: in userlD);
procedure deposit (m: in message: user: in userlD);
function receive (owner: in userlD) return message;
procedure clear (date: in string; owner : in userlD):
function mesnum (User: in userlD7 return amount;
function lookup (owner, user : in userlD) return message;
function nextmsg (m : in message: owner : in userlD) return message;

end StandardMail;

,.-----. - . - - - -!- -
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Another example of a special application is that of a "suggestion box" used for collecting ideas from

employees for improving the working environment or general operations. In this case the package

body of the special version we are designing declares only one unique mailbox which it manages

internally. (The package provides a procedure for deleting messages from the suggestion box. We

assume that the management of the company will take care that this procedure is not misused.)

package SuggestionBox is
use MSG;

type suggestion is new message;

procedure suggest (m: in suggestion);
procedure delete (date : in string);
function firstsuggestion return suggestion;
function nextsuggestion (m: in suggestion) return suggestion;

end SuggestionBox;

The new type suggestion has been derived from type MSG. message. The mechanism of derived

types is explained in Ref.Man. 3.4. It is used in this example to remind the user that he is handling an

oblect that came from - or that will be sent to - the SuggestionBox.

One can think of other special applications such as UNIX pipes, a personal appointments calendar,

etc. The point of the exercise was to demonstrate the use of packages as a tool for specifying special

applications of a general facility. Using packages, one can easily create modified versions of given

facfiities and hide irrelevant details.

*i

I!
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4 Packages as Data Types.

Packages are often used for introducing a data type and the set of operations that apply to objects

of that type. All packages dIscUsse f-ar do exactly that This section shows that in some cases the

package definition itself can serve is the definition of a data type.

Ada distinguishes three classes of types: open types. private types and limited private types. The

latter two restrict the access to objects of such a type in certain ways. What all three have in common

is that users can apply the operations that are defined in the visible part containing the type

declaration. The differences are in structure access operations, such as array access and record

field access, and in assignment or equality tests.

Open types are those whose structure is displayed in the visible parr of a package. An example is

type message in package MSG (Section 3.) A user 6f the type has access to the structure and can

apply record or array access operations to objects of that type (whichever is appropriate).

Assignment and equality tests are also allowed for open types.

Private types hide their structure from users (see Ref.Man 7.4.1). An example of a private type is

type MailBox in package MailSystem (see Section 3). In this case a user cannot apply structure

access operations, but assignmern and equality tests are allowed.

Limited private types behave like private types in that structure access operations Are not permitted

to objects of such a type. In addition, assignment and equality tests are also not permitted. Examples.

of types for which such restrictions make sense are Stack, Queue, Buffer, etc. In each of these cases

it makes little sense to overwrite one of those objects with the conteht of another one (of the same

type). The concept of limited private type is introduced in Ref.Man. 7.4.2.

In the case of a limited private type one can often omit the type definition entirely and define a

generic package instead that plays the role of a limited private type. The point is illustrated by
designing a package for queues. The operations typically defined for queues are ENQ and DEQ,

which make it possible to put items into a queue at one end and take items out at the other end. We

first look at a package QUE that contains an explicit type declaration for queues, and then at one

that contains no explicit type declaration for queues.

Now
I , -
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With an explicit type declaration for queues, the definition of package QUE looks like this:

generic
qsize: integer range 1 64;
type T is private;

package QUE is

type queue is limited private;

procedure ENQ (item: in T: q: inout queue);
procedure DEQ (item : out T; q : inout queue);

private
type queue is

.record
content : array ( 1 .. qsize ) of T;
front, size : integer range 0.. qsize : = 0;

end record;

end CUE;

It is obvious that one wants to define package CUE as a generic package so that one can declare

queues of different sizes and queues containing elements of various types. Note the different

meaning of the keyword private in three places. In the generic clause it means that package CUE will

not make assumptions about type T and will not access the structure of objects of type T. In the

declaration of type queue it means that users of package CUE cannot access the structure of

queues. The private section at the end of the visible part displays the implementation of type queue

to an Ada compiler (see Ref.Man.7.2 "Package Specifications and Declarations").

Instead of declaring type queue explicitly, we now define that type implicitly as part of the definition

of package QUE.

generic
qsize :integer range 1.. 64;
type T is private;

package CUE is

procedure ENO (item : in T);
function DEC return T;

end QUE;
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The package body of QUE contains Ioca; declarations for the queue body and for the variables that

keep track of the front and the size of the queue.

package body QUE is
front, size: integer range 0. qsize: = 0;
qbody: array ( 1 .. qsize ) of T;

procedure ENO is .......... end ENO;
function DEQ is .......... end DEO;

end QUE;

If a user wants to create a queue of a particular size for a particular type of elements (for complex

numbers for instance), he writes in his program the declaration:

package PlexQue is new QUE(qsize = > 36, T = > Complex.pair);

There may be many similar declarations in a program that each introduce a new queue. Operations

on the example queue are denoted by "PlexOue.ENO(u)" and "PlexOue.DEQ", where "u" is a

variable or expression of type Complex. A similar example is found in Ref.Man. 12.4.

It is a good idea to define a type implicitly through a package if one wants to generate isolated

objects that are not used in conjunction with one another. One should realize that generic packages

are somewhat more. restricted than limited private types, because instances of packages cannot be

passed as parameters to subprograms. The fact that such basic operations as assignment §nd

equality tests are not permitted for limited private types implies that one is probably also not interested

in passing objects of limited type as parameters. Stacks, queues, ouffers and the like are typical

examples of objects for which definition as a generic package is appropriate. Complex numbers, and

in general objects that are treated as part of collections, should not be defined as instantiations of a

generic package. It would not be possible to write operations on complex numbers that use

parameters of type complex. Limited private types form a class of types for which passing objects of

such a type as parameters is often unnecessary. The objects themselves are hardly manipulated in

their entirety, which is the main reason for not permitting assignment and equality tests. In this case

objects are often used in isolation from one another. so an implicit type definition through a package

makes sense.

-17
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1. Types

This essay discusses a central part of the Ada language: its type system. The type system controls

all data declaration and manipulation in Ada, and a reasonably complete understanding of it is

necessary for all programmers who use Ada. The discussion is divided into three sections. Section

1.1 discusses the basic Ada rules for data and types. Section 1.2 considers how programs can be

modularized using the abstract type concept. Section 1.3 discusses some techniques that can be

used to generalize type definitions so that types can be composed to form other types. Throughout

the discussion suggestions are made on how to use Ada types in an effective manner. A key part of

this is the presentation of techniques for producing maintainable and machine-independent

programs.

1.1 Type Structure

The major purpose of types is to structure data within a program and to enforce properties that

ensure the consistency of that data.

1.1.1 Objects, Types, and Subtypes

The basic unit of data in Ada is an object. Variabies, constants, and formal parameters (when
bound to actual parameters during a call) are all objects. Each cbject has a set of properties that

control what values the object may have and what operations c an be applied to the object. A major

purpose of these properties is to enforce consistent use of the object by means of appropriate

checking. Some properties are determined at compile time (that is, they are completely checked

during the compilation process), while other properties are determined at run time (that is, they are

checked only when a section of code that depends upon them is actually executed). A run time check

that succeeds during one execution of the code section may fail during some other execution in

which the objects have different values.

The properties that an object has are its type, its subtype, and its value. These properties differ in

the time at which they are determined. The type of an object is determined at compile time. It

controls the general structure of the values that an object can have. For example, the type states

whether an object can have boolean values, or integer values, or some specific kind of structured

value. The type is used for such compile time operations as type checking and overload resolution.

The subtype of an object is determined when tte object is created at run time. The subtype of an

object consists of its type together with a set of constraints that are specific to the type. The

constraints of the subtype of an object serve to further limit the permitted values: however, in this case

the limits can depend upon run time computations. For example, the range constraint of an integer



subtype limits the values of objects with that subtype to some run time determined contiguous finite

range of integer values. An array subtype includes an index constraint which determines the number

of elements in the array. Finally, each object has a value which can, in general, be changed by
assignment anytime during the lifetime of the object.

Since, in general, there will be several objects that share the :same type and/or subtype, the
language provides declarations for both types and subtypes that can then be referenced in other
declarations. For example

type Int is range -1024..1024;

subtype NInt Is Int range 0 ..1024;

11,12: Int;
N: NInt;

In some cases, the Ada type declaration is actually used to declare not only a type, but a/so a

subtype. For example

type BitlO Is array (int range 1..10) of boolean;

is actually equivalent to

type BItlOT is array (int range >) of boolean;
subtype BitlO is BitOT(1..10);

where BitlOT is a compiler generated name distinct from all other names that appear in the program.
When using the type declaration in this way the user should be careful to understand which of the
constraint-like specifications are part of the type and which are part of the subtype. For example the
user can write

typo Bit_I_J is array (int range I..J). of boolean;.
where I and J are variables with type Int. This is permitted because here the range is part of the

subtype. However the user may not write

type IJ is range I..J; -- This Is illegal

where I and J are again Int variables. This is illegal because the range here determines the type and

must therefore be known at compile time. It would be ideal if it were always possible for the user to

use the type declaration only to create types: however, this is not always possible. For example

type Vector3 is array (Int range 1..,3) of Int range 0..100;
V3: Vector3;

defines both a type and a subtype, but here there is no way to rewrite this as a type declaration that
declares only a type and a subtype declaration that specifies the constraints. The reason for this is
that given an array type there is no way to specify further subtype constraints that apply to the array

element type. When this form is used, only a single subtype of the declared type can ever be used,

because there is no way to refer to other subtypes or to the type itself. Further problems can arise
because the subtype of an array slice, such as V3(2..3), can not be referenced. When more that one

-- I _mIIi_ _I ll- m-
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subtype of the type is needed in these cases, then the techniques discussed in the subsection on

parameterized types can sometimes be used.

The subtype declaration can also be used to further constrain a previously declared subtype.

subtype TIis Is t range 0.-100;
subtype T2 is TI range 1..100;

This technique should only be used when T2 is logically relatzi to Ti (via some further constraint).

When this is not true, then it would be better to write

subtype TIis Is t range 0.-100;
subtype T2 is Int range 1.-100;

When this form is used, changes to Ti will have no effect on T2.

1.1.2 Naming

In Ada, all types are named. Most types are named by the user, but there are also anonymous types

whose names are assigned by the compiler. Type naming is the basis of the Ada type equivalence

rules. Two types are equivalent if and only if they have the same name. The major use of type
equivalence is in type checking, which occurs during compilation. A value of an object can be

assigned to some other object only if the two objects have equivalent types, or more simply if the
types have the same name. Similarly an actual parameter can only be passed to a formal parameter
with an equivalent type.

Type equivalence also plays a key role in the overloading of subprograms. Overloading is permitted
for two procedures (or functions) with the same name and with the same number of parameters if the
types of at least one pair of corresponding formal parameters (or for functions result types) are not

equivalent.

The type declaration serves to introduce a new named type. In the case of composite types, each

component type (including the index type for arrays) should have a separate type declaration. For
example
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type 110 Is range 1..10;

subtype Index is Int I..J;

type R is record
X,Y: I10;

end record;

type P is access R;

type A is array (Index) of P;

VRI.VR2: A;
K: Index;

When components are now selected. they will each have a type whose name has been declared.

VR1 -- has type A

VR1(K) -- has type P

VR(K).all -- has type R

VRI(K).X -- has type 110
Because each component type is named, it will be possible to declare a variable which can hold any

component value and it will be possible to pass any component as a parameter.

It is also possible to have anonymous types whose type name is assigned by the compiler. Each

anonymous type is different from all other types. whether user nared or anonymous. Anonymous

types should normally be avoided, since they will severely restrict what can be done with objects or

components that have that type. For example

Anon: array (Index) of boolean; -- Bad programming style

Here it will not be possible to pass Anon as a parameter since its type can not be referenced by the

user. Even it the object is never passed as a parameter, anonymous types should still be avoided.

This will avoid difficulties when the program is modified and the programmer discovers that an object

with an anonymous type then needs to be passed as a parameter.

Although in most cases anonymous types should be avoided, there are two places where they can

reasonably be used. The first place has already been discussed. Recall the example

type Vector3 is array (Int range 1.-3) of Int range 0,,100;

which declared both a type and its only subtype. In this case the type name is anonymous; however

this causes no problems since there is a name by whicn the only subtype of that type that is ever used

can be referenced. The other place where anonymous types are needed is discussed in the

subsection on parameterized types.
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1.2 Abstract Types

As was discussed in the chapter on program structure, packages are a key tool for achieving

program modularity. In this section the use of packages to produce abstract types is considered. As

a basis for discussion the following abstract type will be used. Various techniques used in this

example will be discussed throughout this and later sections.

package Stacks is

type StackSizeT is range 0..10000;

StackMax: constant StackSizeT:= 100;

exception OverflowUnderflow,PostFailure;

type ElemT is range -100..100;
type Stack is limited private;

procedure Init(S: out Stack);

procedure Push(S: in out Stack;!: in ElemT);

-- can raise Overflow

procedure Pop(S: in out Stack);

-- can raise Underflow

function Top(S: in Stack) return ElemT;
-- can raise Underflow

procedure Final(S: in out Stack);

-- can raise PostFailure

private

type ElemArray is array(StackSizeT range 1..StackMax) of ElemT;
type Stack is record

Top: StackSizeT range O..StackMax;

Elems: ElemArray;
end record;

end Stacks;

package body Stacks is

procedure Init(S: out Stack);

begin

S.Top:- 0;
end Init;
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procedure Push(S: In out Stack;I: in Elemi);
begin

If S.Top - Stackax then
raise Overflow;

end If;
S.Top:= S.Top + 1;
S.Elems(S.Top):- 1;

end Push;

procedure Pop(S: In out Stack);
begin

If S.Top - 0 then
raise Underflow;

end if;
S.Top:= S.Top - 1;

end Pop;

function Top(S: in Stack) return ElemT;
begin

If S.Top - 0 then
raise Underflow;

end If;
return S.Elems(S.Top);

end Top;

procedure Final(S: in out Stack);
begin

if S.Top /= 0 then
raise PostFailure;

end if;
end Final;

end Stacks;

Note that the visible part includes, as comments, information about which exceptions can be raised by

each visible subprogram. It is also usually desirable to include a comment with each visible

declaration that describes its use (i.e. for a subprograms this comment would describe its effect when

called).

In this example there are two special visible procedures, Init and Final, which are to be called

explicitly by the user at the beginning and end of the lifetime of any Stack object. For example

LS L
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declare
S: Stack;

begin
mit(S);

-- All other uses of S occur here
Final(S)

end

The Init procedure serves to establish any needed preconditions for S (i.e. it makes sure that S is

initially in a consistent and useful state). The Final procedure is used to check any desired

postconditions (i.e it ensures that S has been left in a reasonable state) and in some cases to do

various clean-up operations just before the end of the lifetime of S.

One problem with both Init and Final is that the user must always remember to call them explicitly at

the beginning and end of the lifetime of any stack object. If the user forgets to make these calls, then

unexpected behavior may result. In the case of Init it is possible to ensure that it is automatically

called whenever a Stack object is declared (unfortunately there is no way to cause Final to be

automatically called). This can be done most simply by deleting the Init routine and changing the

Stack type declaration to be

type Stack is record
Top: StackSizeT range 1..StackMax:-O;
Elems: ElemArray;

end record;

Although this approach works for Stack, there are abstract types that require more general

initialization than can be achieved via the simp;a initialization of record components. In this case a

more powerful (and unfortunately less efficient) approach must be used. Using the original Stack

example as a starting point three changes are needed. First, the Stack type declaration is changed to

be

type Stack is record
Initialized: boolean:= false;
Top: StackSizeT range 1..StackMax;
Elems: ElemArray;

end record;

Second, the specification of Init is removed from the visible part and in the body part it is changed to

be

procedure Init(S: in out Stack);
begin

if not S.Initallzed then
S.Initialized:= true;
S.Top:o 0; -- Arbitrary Initialization code can go here

end If;
end Intt;

Finally, a call to Init is placed as the first statement in the body of the Push. Pop, Top. and Final

subprograms. The first of these calls to done will do the initialization, while in later calls the if test in

Init will fail.

-MN
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1.2.1 Representation Hiding

One of the most important characteristics of abstract types is that their representation is hidden.

This means that users of the abstract type need not understand irrelevant representational details.

Even more important the representation of an abstract type can be changed providing its abstract

behavior remains unchanged. Since changing the representation of a data structure is one of the

most frequent kinds of program changes that are made to improve program performance,

representation hiding becomes crucial to program maintenance. The main tool for the hiding ot

representations is private types. All abstract types should be private. This hides most

representational details: however, the automatically defined assignment and equality routines for a
private type can allow certain aspects of the representation to be visible to users of the abstract type.
This can be seen by comparing a stack with an array representation with another stack that uses a

linked list representation. The automatically supplied assignment for an array will copy the array while

the automatically supplied assignment for the linked list will copy only the pointer to the start of the
list. The user can now detect the difference in representation as shown here:

SI,S2:Stack;

PUsh(Si .1):
Push(S2 .2);
Si :- S2; -here is where the problem happensi
Push(S1,3);
If Top(SZ) 3 then

-- pointer assignment
013e

-- copy assignment
end if;

Similar, detection of representation is also possible by using the automatically supplied equality. One
way to avoid this problem is to make all abstract types be limited private. Since assignment anid

equality are not automatically provided in this case, all representational details are hidden. Another
approach that will also work is to always use an access type as the top level of the representation of
an abstract type. However, there is extra overhead associated with this use of pointers and pointers
will severely limit the optimizations that most Ada compilers will be able to detect- therefore, this
approach is not recommended. The example below shows how Stack can be changed to use a linked
list rather than an array representation. This example is abstractly equivalent to the original Stack
example.
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with UncheckedDeallocation;
package Stacks is

type Stack is limited private;

type StackSizeT is range 0.. 10000;
StackMax: constant StackSlzeT:u 100;

exception Overflow,Underflow.PostFailure;

type ElemT is range -100. .100;
type Stack is limited private;

procedure Init(S: out Stack);

procedure Push(S: in out Stack;I: In ElemT);
-- can raise Overflow

procedure Pop(S: in out Stack);
-can raise Underflow

function Top(S: in Stack) return ElemT;
-can raise Underflow

procedure Final(S: in out Stack);
-can raise PostFailure

private
type ItemT";
type ItemPtr Is access ItemT;
type ItemT is record

Val: ElemT
Next: ItemPtr;

end record;
type Stack is record

Top: StackSizeT range 0. .StackMax;
Elems: ItemPtr;

end record;

end Stacks;

7,*



procedure Free is new UncheckedDeallocation(ItemT.ItemPtr);

package body Stacks is

procedure Init(S: out Stack);
begin

S.Top:u 0:
S.Elems:- null;

end Init;

procedure Push(S: in out Stack;I: in ElemT);
begin

if S.Top -Stackt~ax then
raise Overflow;

end if;
S.Top:- S.Top + 1:
S.Elems:- new ElemPtr(I.null);

end Push;

procedure Pop(S: in out Stack);
P: ItemPtr;j

begin
i f S.Top - 0 then

raise Underflow;
end if-.
P:- S.Elems;
S.Elems:- P.Next;
Free(P);
S.To;:- S.Top - 1;

end Pop;

function Top(S: in Stack) return ElemT;
begin

if S.Top - 0 then
raise Underflow;

end if;
return S.Elems.Val;

end Pop;

procedure Free-jtemPtr(P: in ItemPtr)
begin

if P /- null then
Free_ TterPtr(P.Next);
Free(P):

end if;
end FreeItemPtr
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procedure F nal(S: in out Stack);
begin

FreeItemPtr(S.Elems);
If S.Top /- 0 then

raise PostFailure;
end if;

end Final;

end Stacks;

This example makes use of a Free procedure that explicitly frees the heap space used by the heap
object pointed to by its parameter. Notice here how the Final procedure is used to ensure that all
heap objects associated with the stack have been freed.

1.2.2 Kinds of Abstraction

This section discusses a useful classification scheme that can be used to decide among several

package forms that can be used to structure data. The classification is based on the state information
associated with the objects that can be derived from the package.

1. Subprogram libraries - Here the package contains only subprograms but not object or
type declarations. Such libraries have no associated state.

2. Abstract objects - Here the package can contain both objects and subprcgrams but not
types. The package can itself can be thought of as an "object" whose state is
represented by the values of the objects it contains. As is the case for abstract types the
representation of the obiects within the package can be hidden. An abstract object is a
good alternative to an abstract type when only one object with the type is ever created in
the programs. This will frequently happen when large single instance tables are used.
The abstract object is normally more efficient than an abstract type since the "object" is
contained entirely within the package and need not be passed to each subprogram as a
parameter.

3. Abstract types - Here the package can contain types and subprograms but not objects.
Multiple abstract oblects are created by using the visible type in multiple object
declarations outside the package. The previous Stack examples illustrate this case.
Another approach to mltitple abstract objects is to instantiate a generic abstract object
package multiple times. This approach is not recommended since the resulting object
instances do not have a type and therefore can not be passed as parameters.

4. Related abstract types - When there are two (or more) related abstract types it is often
useful to declare them within a single package. This allows both representations to be
hidden from users. but at the same time routines in the package with parameters of both
types can have access in their implementation to the representation of both types.

It is also sometimes useful to use some combination of the above techniques. For example, a

package that contains objects, types, and subprograms is used in programs that need to mix the
abstract obiect technique with the abstract type technique.

3CL,



1.2.3 Derived Types

Derived types permit a new t pe to be derived from an existing type. The new type "inherits" the

operations of the existing type. As a general rule derived types are not needed and should not be

used.

There is however one place where the use of derived types is necessary. A type declaration of the

form

type Int is range -1024..1024;

is actually equivalent to

type IntT is builtin_ Integer;
subtype Int is IntT range -1024..1024;

where IntT is an anonymous type and built in integer is one of the implementation defined integer

types that is large enough to hold values in the range -1024..1024. Although the particular type

selected is implementation dependent. the resulting subtype is implementation independent. This

implementation independence is the reason why the use of derived types is necessary for all numeric

types.

The only alternative to the use of derived types, is to use one of the built-in integer types. This must

be avoided if transportability is desired, since the maximum range of these types can vary from one

target machine to another (or even within different implementations for a single target machine). As

an example of what to avoid, the type integer should never be used in a program.

type R is record
X,Y: integer; -- Bad programming style

end record;

A more subtle use of the integer type appears in

type A is array (1..10) of boolean: -- Bad programming style

Here the index type of the array will default to integer and the program will be machine dependent.

This is the reason why array index types should always be user declared.

There is a strong temptation to use the integer type for those integer variables where no range is

obvious. A better approach is to declare

type my-integer is range -20015..20015-1;

The range should be selected to be sufficiently large to hold the largest expected integer value but

also small enough to be supported by all Ada implementations of interest. Unlike programs that use

the integer type, programs that use the my.integer type will be machine-independent.

]
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1.3 Type Composition

This section discusses two techniques, type parameters and generic types, that can be used to

generalize a type declaration so that parameters can be used to produce multiple related types at

compile time and to produce multiple related subtypes at run time.

1.3.1 Type Parameters

Type parameters are a technique that can be used to separate the declaration of a type from the

declaration of its subtypes. The Ada language provides several facilities which when used correctly

will, in some cases, give the effect of parameterization of subtype constraints through an arbitrary

number of structural levels. The following example illustrates each of these facilities.

type 110 is range -10..10;

subtype PI1O is I10 range 0..10;

type R(I:PIIO) is record
case I Is

when 0..6 =>
X: I10 range 0..5;

when 5..10 ->
Y: 110 range 5..10;

end case;
end record;

type A Is access R;

type V(J:PIIO) is record
Y: array (PI10 range O..J) of A(J);

end record;

type RI(K:PI1O) is record
TU: V(K);

end record;

Val: P110;
V1: R1(6);
VI: RI(Val);

There are four basic techniques that are used to achieve parameterization here:

1. Range and accuracy constraints - These constraints serve as the Parameterization
technique for scalar types. It is not possible to control these constraints through multiple
structural levels. For example when an integer subtype appears as a component of a
record, then the range of this subtype must be specified when the record is declared and
can not depend upon the discriminant parameters of the record.

2. Discriminants - This parameterization technique can only be used for records. In this
case the formal parameters appear explicitly, as a discriminant of the record.

3:
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3. Constraint inheritance - This parameterization technique is used for access types. Any
parameters of the underlying type are "inherited" by the access type.

4. Anonymous arrays used with discriminants - This technique is used for arrays. Here the
array is embedded as the onlv component of a record with a discriminant. In this case the
array type is anonymous: however, this causes no problems since the enclosing record
type can be used as the effective type for the array. In the above example the user should
use the object V1.T which has type V rather than the object V1.T.Y which has an
anonymous type to refer to the entire array. When this technique is used, slices of the
array will have an anonymous type and should be avoided. Note that index constraints
can be used instead when parameterization of the array element type is not needed (in
this case slices will no, cause problems).

One further problem with parameterization should be noted: parameters must be used directly; that is,

they may not be involved in computations. For example the following illegal example

type VI(J:PIIO) is record
Y: array (PI10 range -J..J) of boolean; -- the -J is illegal

end record;

X: V1(10);

would have to be handled instead by

type VI(JL,JH:PIIO) is record
Y: array (PI10 range JL..JH) of boolean;

end record;

X: V1(-10,10);

These techniques can be used to generalize the previous stack example by parameterizing the

stack size. This is done by deleting the declaration of StackSize and by replacing the private part by

type ElemArray(StackMax:StackSizeT) is record
A: array(StackSizeT range 1..StackMax) of ElemT;

end record;
type Stack(StackMax:StackSlzeT) is record

Top: StackSizeT range O..StackMax;
Elems: ElemArray(StackMax);

end record;

Also note that .A qualifications must be inserted at the appropriate places in the package body.

1.3.2 Generic Types

Another way in which the Stack type can be generalized is by parameterization of the element type.

Since types must be knov,,n at compile time, type parameterization is done by a compile time facility,

generics. The stack can be made generic in its component type by deleting the ElemT type

declaration from the visible part and then appending a generic part with an ElemT type parameter to

the beginning of the package specification.

33
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generic

type ElemT is private;

package Stacks Is
... --same as before, except ElemT declaration has been deleted

end Stacks;

Instances of Stack are now created by generic instantiation.

package IntStacks is new Stacks(Int);
package BoolStacks is new Stacks(boolean);

SI: IntStacks.Stack;
BI: BoolStacks.Stack;

The previous approach to generic stacks has a problem: it is impossible to create a stack whose

components are stacks. This is because Stack is a limited type while ElemT may not be limited. A

second problem is that Final for the elements which are stacks will not be called at the needed times.

This can be corrected by adding with clauses to the generic part.

generic
type ElemT is private;
with function Assign(LHS: out ElemT,RHS: in ElemT) is 0;
with Final(E: in out ElemT) is 0;

package Stacks is
- same as before except an Assign routine is added for stacks.

end Stacks;

In addition to adding a definition for the Assign procedure, the package body will also need to be

changed to use Assign instead of = for element assignment and to call Final just before the end of an

element object lifetime. Since most types do not have an Assign or Final subprogram it will first be

necessary to define them before a stack can be declared.

procedure Assign(LHS: out Int.RHS: in Int)
begin

LHS :- RHS;
end Assign;
procedure Ftnal(E: In out Int)
begin

null;
end Final;

package IntStacks Is new Stacks(Int);

package IntStackStacks is new Stack(IntStacks.Stack);

SSI : IntStackStacks.Stack;

3f
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1. Introduction and Overview

This is the first in a continuing series of volumes, the purpose
of which is to present a tutorial introduction to the so-called "tasking
facilities" embodied in the Ada programming language. Such a
presentation can in no way serve as a substitute for information
provided by the Language Reference Manual [LRM: Reference Manual for the
Ada Programming Language, Proposed Standard Document, United States
Department of Defense, July 1980]. We assume a thoroughgoing knowledge
of that document on the part of every reader, and we also highly
recommend a reading of relevant portions in the "Rationale" document
which accompanied the preliminary definition of Ada [SIGPLAN Notices,
Vol.14,6,B, June 1979], even though some of the material contained
therein is now partially outdated.

The intended audience for this series consists of pi gram (or
system) designers, whence we are not primarily concerned with conveying
the purely mechanical aspects of "coding" in (yet another) new
programming language. Rather, our long-term goal is to develop a
workable set of guidelines, whereby the program designer can naturally
and effectively make use of the facilities in Ada to construct the kinds
of complex softwwere systems which were meant to be supported by this
particular language. Our subject area and assumed readership implies a
high degree of familiarity with multi-process applications from the
outset; the ideal reader will have already "trued out" the tasking
facilities of Ada (at least on paper), an experience which may well have
produced a certain sense of frustration. Such a reaction might be
attributed in part to the fact that Ada does not seem to directly
provide a practitioner with the traditional "tools of his trade" --
e.g., buffered message-passing or dynamic process-creation. Moreover,
though primitives for each of these (or other) styles can theoretically
be constructed within the Ada framework, this is not necessarily the
most appropriate way to exploit the possibilities of the basic model
embodied in this language.

For the foregoing reasons, we have opted to proceed from first
principles in this series. The present volume introduces the essential
concepts of the application domain under consideration, and covers the
basic notions of interprocess communication in concurrent systems. Its
sequel is devoted to higher-level structuring approaches within The Ada
framework. Subsequent volumes will consist of more concrete examples,
developed in the form a case studies.
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2. By Way of Background

This section introduces the basic concepts with which we shall be
concerned throughout this presentation. In particular, it will serve to
characterize the category of programs that is of primary interest here,
namely so-called "concurrent systems." The section concludes with a
brief overview of the facilities in Ada for programming such systems.

2.1. Sequential Programs

Conventional computer programs, however large or complex, are
normally formulated as a single sequential process. That is to say that
they are defined in terms of a certain set of data objects, to which
they are assumed to have exclusive access, together with a series of
statements specifying what operations are to be carried out upon those
objects. The statements in question will be executed one after another
and, within each successive statement, its constituent expressions will
also be evaluated in some pre-established order. Although such programs
typically involve explicit transfers of control, occasioned both by
conditional and iterative statements as well as by invocation of
procedures or functions, and even though these constructs can generally
be nested to an arbitrary depth, there is still only one "locus of
control" associated with any execution of the program as a whole (whence
it may be considered as a single process). This simple sequential model
is sufficient to accommodate an extremely wide variety of computational
tasks, including not only traditional data processing and scientific
applications but also much of the system software required to support
such programs (e.g., a compiler).

2.2. Concurrent Systems

There is however another very important category of programs, more
properly referred to as "systems," which are most naturally formulated
in terms of multiple sequential processes. Each such process embodies
its own set of objects and separate series of statements (like a
self-contained program), whence it is specialized to one particular
role; the larger objectives of the overall system are then achieved by
means of suitable intercommunication amongst these active entities. The
archetype for this structural approach is of course to be found in
social organizations, where a number of otherwise autonomous agents
often act in collaboration to accomplish some collective function.

The underlying computational model for such systems involves
concurrent execution of their constituent processes. Unlike purely
sequential programs, a concurrent system has several distinct threads of
control (one per active process), all of which evolve independently and
(conceptually) i n parallel. The only need for synchronization of their
execution arises at points where two or more process m u st ir e c tly
interact with one another. Ctherwise, each may; proce at its own pace.
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From the outset, it must be emphasized that the parallelism which
is intrinsic to concurrent systems may well be more apparent then real,
since the logical processes of any given application still have to be
mapped onto a fixed number of physical processors. This mapping is
usually achieved by imposing some appropriate scheduling discipline,
whereby the actual execution of those processes will be at least
partially serialized (and totally so in the case of a true
mono-processor target configuration). Thus, the potential parallelism of
this model does not necessarily represent a source of improved
throughput. This latter goal can be realized only to the extent that it
is possible to exploit whatever physical concurrency might be present in
the underlying hardware, for instance by dedicating completely
autonomous processors to specific active processes.

The real interest of the concurrent system model lies rather on a
more fundamental level. In particular, this conceptual framework allows
a designer to isolate possibly simultaneous or inherently asynchronous
activities within a complex system, and then to formulate each one as a
separate sequential process without having to specify in advance exactly
how their execution is to be dynamically interleaved.

This- --atter property turns out to be essential for an increasingly
important class of applications, encompassing conventional operating
systems as well as real-time control systems, multi-station transaction
systems etc. In attempting to characterize the application domain for
which the Ada language was conceived, this class has been referred to as
"embedded computer systems."

Perhaps the primary characteristic which distinguishes such
applications is that they are all event-driven systems. In essence,
their sole reason for existence is to respond to a variety of external
stimuli -- ranging from operator and end-user requests to initiate or
terminate some specified (high-level) transaction down to device
interrupts and timing signals generated by the (more or less
specialized) hardware they serve to control. Much of the intrinsic
complexity of these applications arises from the fact that the events in
question occur asynchronously: neither their actual order of arrival nor
their relative ordering can be prescribed in advance (since they are, in
effect, a manifestation of the "outside world").

Obviously, the software which serves to control such a system lies
at the opposite end of the spectrum from traditional data processing or
scientific applications, wherein all external transactions (e.g., file
accesses) are -- or at least appear to be -- fully synchrononous
operations, invoked by the execution of a single sequential program. The

* a~ynchronous (and thus naturally concurrent) character of the external
events that ultimately drive the class of systems considered here
imposes from the beginning a logical organization which comprises

* multiple independent processes.



Very schematically speaking, there will exist a separate process
to handle each (physical or logical) "resource" within the system, along
with additional processes to carry out the various different
"activities" which could conceivably be in progress at any given time.
Moreover, this same basic structuring principle can (and generally will)
be re-iterated at successively higher "levels of abstraction,"
corresponding approximately to autonomous subsystems which perform
progressively more complex functions within that overall organization.
The requisite internal synchronization, whereby proper operation of the
system as a whole is established and maintained, must then be embodied
in the "protocols" which govern the possible interactions among this
multiplicity of processes and subsystems.

2.3. Synchronous Communication

The purpose of synchronization within any concurrent system is to
impose the minimum constraints upon the (otherwise unconstrained) order
in which each independent process may legitimately proceed, such that
the larger objectives of the system as a whole will always be achieved.
As stated initially, the need for synchronization only arises when two
or more processes must interact with one another, whence it is
intrinsically a matter of interprocess communication (i.e., involving at
least two distinct parties). The "such that" proviso put forth just
above implies, in the final analysis, that each constituent process of
the system will always perform its own role in a "socially acceptable"
fashion. This comes down to requiring-E at every separate process be
able to maintain the integrity and consistency of its own internal
state. Only under these conditions can it guarantee that any
interactions with other processes will be "meaningful" (at least from
its standpoint); if all parties to every transaction are able to make
the same guarantee, however, then it must be true that the overall
system will operate as expected regardless of how execution of the
constituent processes is actually interleaved in time. (This argument
presumes, of course, that these processes and their pattern of
intercommunication were properly specified in the first place -- wherein
lies the real challenge of system design!)

The essence of synchronization is then to delay any act of
interprocess communication until such time as all of the participants
directly affected by that particular transaction are prepared to change
their internal states in a mutually consistent fashion. (It is precisely
this delay which provides the occasion for some form of scheduling to
intervene, whereupon a choice may be made amongst pending transactions
for which all parties involved are either ready to proceed or have
already completed their interaction.)
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Aside from delays explicitly introduced for synchronization(however this is accomplished), the semantics of concurrent computation
says that the active processes within a given system should always be
considered as if they were in fact executed in parallel, albeit at an
undefined rate of progress relative to one another. The reason for
following this precept is to avoid all implicit assumptions regarding
the specific scheduling strategy, the physical characteristics of the
underlying hardware or the actual order in which external events arrive.
Any such assumptions could lead to time-dependent anomalies under even
slightly altered conditions (and therefore represent a source of design
errors that are especially difficult to detect -- and often almost
impossible to correct "after the fact").

It is generally well understood that this basic design principle
effectively precludes unsynchronized accesses to global data -- i.e.,
"shared variables" -- as a safe means of interprocess communication. If
two separate processes are indeed executed in parallel, one of which
updates a certain data structure while the other reads it (which
presumably will occur if they are trying to communicate in that manner),
then those data accesses must be regarded as asynchronous and therefore
unsafe (since the respective references and assignments could well be
interleaved in a wholly arbitrary and not necessarily atomic fashion).
The need to synchronize access to such data implies that there are only
two approaches which are always safe: either those variables must be
made local to one process or the other (in which case they are no longer
global, but rather part of the internal state of a specific process);
or, alternatively, they must be confided to a third party which will act
to ensure the requisite synchronization (whereupon they become local to
this intermediary process, which then plays the role of a "shared
resource" that serves to coordinate communication between the two
original processes). Whichever alternative is adopted, the net effect is
to reduce all interactions to synchronous communication -- which remains
the only viable way for independent processes to interact.

Quite apart from whatever sequentialization might be introduced by
implicit scheduling, the potential parallelism within a given system may
well be highly constrained, or even precluded entirely, as a result of
the particular protocol adopted for interprocess communication. If, for
example, a data acquisition process is specified so as to await
confirmation that each item produced has reached its ultimate consumer
before starting to acquire another, then the system will in fact operate
in a purely sequential fashion. On the other hand, if the process in
question is allowed to proceed with the acquisition of another item
immediately upon delivery of the previous one to some intermediary
(perhaps the first among many), then there exists at least the
possibility for parallel activity -- whether or not this can be
supported by the actual hardware. Thus the specific pattern of
synchronous communication amongst the'various processes determines the
degree of logical concurrency embodied in the design of that system. As
a general rule, in the absence of other constraints one will seek to
maximize logical concurrency.
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2.4. Concurrency in Ada

A sequential Ada program consists solely of subprograms (no matter
how deeply nested or structurally "packaged"), and can therefore be
executed as a single (externally initiated) process. In the more
general case, however, a complete "main" program will consist of
multiple sequential processes, each of which is represented by means of
a separate task declaration, together with its associated task body
(where this body serves to dfine the potentially parallel pFath of
execution corresponding to an independent process). Thus an Ada task
constitutes the unit of logical concurrency within that language. Any
program comprising one or more task declarations may therefore be
construed as a concurrent system.

Reflecting the fundamental requirements for such systems, the
synchronization primitives embodied in Ada are based on *explicit
interprocess communication -- an approach inspired primarily by the
"Communicating Sequential Processes" model originally introduced by
Hoare ECACM, Vol.21,8 August 1978]. Moreover, Ada supports this
synchronous communication in the form of an essentially procedural
interface between exactly two (necessarily distinct) sequential
processes:

- the caller task, which initiates a new transaction by requesting
some particular named service (say S);

- the server task, which responds to each such request by carrying
out the operation associated with S (if any).

We shall schematically depict this form of communication as follows:

Caller--------------------------- >: Server

It may be observed that the caller/server relationship is inherently
asymmetric, reflecting the flow-of-control between the two parties
involved in every such transaction. The initiative lies entirely with
the caller, who actively requests a specific service (which is
identified by name as part of the call. itself). The server plays a more
passive role, simply responding to the individual requests as they occur
(without even knowing the identity of the caller being served in each
instan~ce); it is nonetheless the server who establishes the meaning of
such calls (as defined by the associated operation), and who thereby
determines the point at which any given transaction is considered to be
complete (whereupon the corresponding caller may once again proceed).



In the context of such transactions, it is also possible for
information (as well as control) to flow between the two participant
processes. The passage of data is achieved by means of formal
parameters, one or more of which may be associated with the particular
operation to be invoked. These are specified in accordance with the same
conventions that apply for Ada procedures:

Transmission of Data:

P( ... X: in Tx; ...)

Caller --------------------------- > Server->II

Reception of Data:

Q(...Y: out Ty;. .)
Caller -------------------------- >: erver

I I I

Interchalge of Data:

R(...Z: in out Tz;...)
Caller -------------------------- > Server

I <--)

No Passage of Data:

Caller > I
Cle--------------------------- > Server

Hence both the extent the direction of data-flow are wholly independent
of the basic flow of control for interprocess communication.
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The underlying control relationship involved in this form of
communication may be viewed as establishing a "connection" between the
caller process and the server process, which lasts for the duration of
each individual transaction. Information may or may not flow across such
a connection, depending upon the associated parameter specification: if
there are arguments to be passed, they will be transmitted from caller
to server upon initiation of a given transaction; if there are results
to be returned, they will be transmitted from server to caller upon
subsequent completion of that transaction; if there are no formal
parameters, then only the basic control signals (corresponding to making
and breaking of the connection) need be exchanged between the two
intercommunicating processes.

It can be seen that, from the standpoint of the calling process,
the semantics of synchronous communication in Ada are exactly the same
as for a conventional procedure call. This comes about because the
caller task is effectively suspended until the corresponding transaction
is complete, just as if it had invoked an ordinary procedure.
(Furthermore, if for any reason a certain transaction cannot be
completed successfully, this failure will be signaled by the raising of
an exception within the context of the calling task, as for any
unsuccessful subprogram call.)

It is on the side of the server, rather than of the caller, that
additional steps must be taken in order to ensure the synchronization
required for interprocess communication. A simple procedure call cannot
safely be used for such communication any more than direct access to
global variables, since that procedure is in effect executed as an
extension of its caller (and hence conceptuclly in parallel with the
corresponding server). Moreover, it may be the case that a given
procedure is called from more than one process, whereupon there could be
several separate instances of that procedure executing concurrently.
This potential parallelism poses no particular problem concerning
accesses to local variables and/or formal parameters of that operation,
since these entities are (by definition) distinct for every invocation.
If however the procedure in question accesses any global data (so as to
communicate with the server), then all of those accesses must again be
regarded as asynchronous.

For purposes of synichrono's communication, Ada provides an
alternative form of definition, wherein each such operation is declared
to be an entry belonging to the server process. Ths is specified as
part of the corresponding task declaration:

task Server is

entry E(. ..

end;
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This distinction between defining a particular operation to be an
entry, as opposed to a procedure, comes down to specifying that
concurrent calls should be serviced sequentially instead of in parallel.
For an entry, the meaning of the opera i-on in question is established by
one or more accept statements, effectively appearing in the imperative
part of the associated task body (and, in almost all cases, embedded
within some sort of loop):

task body Server is

begin

lop

accept E(. . .. do

end;

end loop;

end Server;

An accept statement serves to define the sequence of actions (those
enclosed between the delimiters do . .. end) to be executed for the next
of the (possibly many) pendi- - calls to the same named entry, during
which time the server is said to be in rendezvous with the corresponding
caller (so that the server has access to e parameters of that
particular invocation as well as to its own data); only after the
actions specified within such an accept statement have been carried out
is that entire transaction considered to be complete, whereupon the
caller and server processes may once again proceed concurrently. In the
simplest case, when there are no actions to be performed during the
rendezvous (nor any formal parameters) , the accept statement may be
reduced to its degenerate form:

accept S;

In such situations, the entry S may be regarded as a pure "signal," the
next pending call to which is simply "acknowledged" by this statement.

Thus the acceptance of successive calls becomes a fully
synchronous operation, embodied in an executable statement (unlike a
procedure, the meaning of which is defined by a purely declarative
construct). Accordingly, the server itself can control the points at
which communication with its caller(s) may occur. Within this framework,
concurrent cplls are conceptually enqueued on the designated entry (in
their actual order of arrival), from where they will be served one after
another. If there are no calls outstanding for an entry that is rendy to
he accepted, then the server process i.s delayed on its sideb until suchtime as that accept statement can be completed.



In addition to a simple accept statement, Ada also allows the
programming of a so-called selective wait:

select

accept E1(...) do

end;

or
accept E2(. .. ) do

end;

or

or
accept En(...) do

end;

end select;

This permits the server to make a (non-deterministic) choice amongst
potentially pending calls to several different entries El, E2, ... En,
and then to perform some suitable sequence of actions according to which
particular transaction was selected. Moreover, the accept statements
appearing in a selective wait may be individually guarded by means of a
boolean expression, which must be true in order For-the associated
alternative to be selected:

select
when Gi =>
accept E1(...) do

end;

or

or
when Gm =>
accept Em(. .. ) do

end;

end' slect;

By appropriately setting the values of local variables figuring within
the guards GI... Gm, the server task may exercise finer control over
which entries are actually "open" each time this selective wait
statement is executed.

-10-
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In terms of these facilities, thne server process can be explicitly
programmed to maintain the consistency of its own data and, thereby, to
ensure the correctness of operations by which it communicates with other
processes -- irrespective of the number of calls that might be pending
concurrently (which necessarily emanate from distinct callers). Hence,
it is the server which ultimately establishes the synchronization
required for interprocess communication. Any given caller merely
initiates a request for some particular transaction and then waits for
that transaction to be completed, exactly as in the case of an ordinary
procedure call.

Thus, there is no need for the calling processes to be in any way
concerned with whatever additional synchronization might be imposed by
the server for its own purposes. As such, it is sufficient for the
server to present a purely procedural interface to its potential
callers. Within this framework, the design of a concurrent system
therefore proceeds by methods which are, in many respects, analogous to
the decomposition of a sequential program into a collection of
subprograms which invoke one another. In particular, the key to
specifying an appropriate pattern of intercommunication amongst the
constituent processes of such a system (and thus, to establishing the
existence of distinct processes and their associated interfaces during
successive stages of decomposition) is to define, in first instance, the
desired caller/server relationship within a proposed configuration. This
initial step may be carried out in exactly the same way as for a
sequential system -- i.e., as if the transactions in question were
conventional procedure calls; all further considerations, insofar as
they relate only to synchronization issues, can then be addressed solely
in the context of-the corresponding server definitions.

An Ada task may have zero, one or more entries defined as part of
its interface; similarly, the associated task body may nor may not call
upon the operations provided by other tasks. The resultant caller/server
relation is what ejtablishes the overall pattern of interprocess
communication within a given system. In general, a task representing
some particular process may therefore be both caller and server. There
are, however, two special cases which we shall categorize as follows:

- a resource, corresponding to a process which is purely a server;

- an activity, corresponding to a process which is only a caller;

Experience has sho4n that this (rather intuitive) taxonomy nonetheless
provides a useful frame of reference, especially as one proceeds to
design of larger-scale concurrent systems (a problem which will be taken
up in the sequel to this volume).
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3. Basic Interprocess Communication

By way of illustrating the' basic principles of interprocess
communication within the Ada framework, we shall build upon a very much
simplified, albeit archetypical, example. At the conceptual level, the
system in question consists of just three processes.

- a PRODUCER process, which is dedicated to data acquisition
(e.g., input from some external source or device), where the
data items so acquired are delivered one at a time as output
from this process.

- a TRANSDUCER process, which serves to carry out some
(potentially quite complex) transformation on the data supplied
as input, where the corresponding result for each such argument
is delivered as output.

- a CONSUMER process, which is responsible for the final
disposition of the result data (e.g., output to some display or
storage medium), where the successive data items are supplied as
input to this process.

The intended flow of information amongst these three processes is shown
pictorially in Fig. 3.-1. In terms of data-flow, it can be seen that the
constituent processes of this system are organized into a conventional
"pipeline" (or "bucket brigade") configuration.

PRODUCER 1A:ARG \~TRANSDUCER R:RES \CONSUMER
process / process / process

- - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Figure 3-1: Data-Flow of the Example Multi-Process System.

3.1. Initial Formulation in Ada

Turning to the formulation of this example in Ada, the simplest
possible program structure will be adopted at the outset. More realistic
approaches to the overall structuring of such systems are to be
addressed in the next volume of this series. For the moment, however, it
will be assumed that the particular application of interest can be
conveniently expressed as a single "main program."
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In skeleton form, the definition of such a main program might
appear as follows:

procedure Application is

type ARG is array ... of ...

type RES is array ... of ...

task Producer is ... ;

task Transducer is ...

task Consumer is ... ;

task body Producer is

begin.

end Producer;

task body Transducer is

begin

end Transducer;

task body Consumer is

begin

end Consumer;

begin
null;

end Application;

Formulated in this manner, the constituent processes of the system are
specified directly in terms of declarations for the corresponding tasks
(Producer, Transducer and Consumer), together with their associated
bodies. As such, the entire system is effectively defined within tne
declarative part of the enclosing main program (Application), whereupon
the statement list of this latter is empty. Thus, a given execution of
Application (as an externally initiated task) consists simply of
activating its three component tasks, which then proceed to communicate
amongst themselves; that execution is finished only when all of those
dependent tasks have properly terminated, owing to the implicit "join"
at the end of the embedding (main) task.
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3.2. Simple Patterns of Communication

Once such an overall system structure has been established, the
primary question then becomes how to specify the requisite pattern of
communication among its constituent processes. The intended flow of
information has already been fixed (cf. Fig. 3-1), namely:

- items of tyne ARG are to be transmitted from the Producer to the
Transducer process;

- items of type RES arelto be transmitted from the Transducer to
the Consumer process.

Having chosen here to explicitly represent each of these processes as an
Ada task, it follows that this intercommunication must be carried out in
a fully synchronous f3shion, making use of the entry call/accept
mechanism. Indeed, no other approach would be viable, since these
language facilities embody the only safe means whereby individual tasks
may directly interact with one another.

Even though the possible approaches to interp'-ocess communication
are so constrained, the program designer is nevertheless left with a
very important degree of freedom in this regard. Specifically, the
client/server relationship (i.e., "who should call whom") can be decided
upon independently of the desired data-flow. Thus, for both of the
elementary transactions described above, the flow of control need not
necessarily correspond to the direction in which information is to flow.
In the present context, therefore, four distinct patterns of
communication might well be considered. These alternatives are depicted
schematically in Fig. 3-2, on the next page.

All of the communication patterns shown in Fig. 3-2 are equally
plau.,ible, although there are advantages and drawbacks associated with
each approach. The choice ultimately depends upon the expected behavior
of the system as a whole. For this reason, we shall examine these four
alternatives one after another in the subsections which follow,
attempting to provide some insight into the basis upon which such
decisions are made. It will emerge from the ensuing discussion that
these considerations play a quite critical role in the program design
process.
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Asymmetric Communication Patterns

Forward-Directed:

Send(A:in ARG) Send(R:in RES)
Producer------------------ > Transducer------------------ > Consumer

Backward-Directed:

Recv(A:out ARC) Recv(R:out RES)
Producer ;------------------ Transducer 1------------------ Consumer

Symmetric Communication Patterns

Inward-Directed:

ISend(A:in ARC) 1 Recv(R:out RES)
Producer------------------ > Transducer :<---------------- Consumer

Outward-Directed:

Recv(A:out ARC) Send(R:in RES)
Producer ;<---------------- Transducer------------------ > Consumer

Figure 3-2: Alternative Patterns of Communication in the Example System.
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3.2.1. Forward-Directed Communication

Pursuing the development. of our example system, we shall opt
initially to structure the interrpocess communication as follows:

Send(A:in ARG) Send(R:in RES)
Producer ----------------- > Transducer ---------------- > Consumer

Such a pattern of communication is referred to as "forward-directed,"
because the flow of control goes in the same direction as the flow of
information. On purely intuitive grounds, this might seem to be the most
natural approach. For this reason alone, it has been adopted here as a
point of departure; as yet however, there is no pragmatic basis for
preferring this particular approach over any of the other alternatives
depicted in Fig. 3-2.

It is perhaps useful to characterize the configuration shown abcve
according to the terminology introduced earlier. At this level cf
description, the Producer process represents an activity (since it iC
merely a caller), whereas the Consumer process constitutes a resource
(since it is only a server). The Transducer process is neither activity
nor resource (being both server and caller), which reflects its
intermediary role in this organizational structure.

Given the communication pattern specified in the above diagram, a
corresponding Ada formulation can be obtained by appropriately refining
the overall structure outlined previously. Proceeding in this fashion,
the constituent processes of the system would now be represented (withir
the declarative part of the main program Application) by the f:1iowir._
(complete) task declarations:

task Producer;

task Transducer is
entry Send(A:in ARG);

end;

task Consumer is
entry Send(R:in RES);

end;
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The associated bodies would then be defined (still in skeleton form) as
follows:

task body Producer is

begin

Transducer.Send( ...);

end Producer;

task body Transducer is

begin

accept Send(A:in ARG) do

Consumer.Send( ...)

end Transducer;

task body Consumer is

begin

accept Send(R:in RES) do

end Consumer;

Although these task bodies are not yet complete, this structure is now
sufficient to exhibit the pattern of interprocess communication
currently under consideration:

- the Producer calls Transducer's entry Send which, when accepted,
allows transmission of an item of type ARG;

- the Transducer calls Consumer's entry Send which, when accepted,
allows transmission of an item of type RES.

This framework therefore provides a basis for sketching out a possible
formulation for the "steady-state" operation of the entire system (i.e.,disregarding for the moment the problems of process initiation and

termination).
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3.2.1.1. Steady-State Operation

A first definition for the steady-state operation of the example
system could be obtained by completing its task bodies as follows:

task body Producer is
AA: ARC;
procedure Acquire(A:out ARC) is ...

begin
loop

Acquire(AA);
Transducer. Send (AA);

end loop;
end Producer;

task body Transducer is
AA: ARG;
RR: RES;
procedure Transform(A:in ARC; R:out RES) is ...

begin
loop

accept Send(A:in ARG) do
AA := A;

end;
Transform(AA, RR);
Consumer.Send(RR);

end loop;
end Transducer;

task body Consumer is
RR: RES;
procedure Dispose(R:in RES) is ...

begin
loop

accept Send(R:in RES) do
RR := R;

end;
Dispose(RR);

end loop;
end Consumer;

Specific details of the data acquisition, transformation and disposition
operations are of no immediate interest here, whence the corresponding
actions have been encapsulated as local procedures, which will not be
further defined.
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What is of definite interest, however, is the flow of information
between the constituent processes of our example system. For the pattern
of communication considered at present, the actual data transfers must
be defined by means of appropriate accept statements within the bodies
of the Transducer and Consumer tasks, respectively. Recall that an
accept statement specifies a sequence of actions to be carried out
whilst the caller and server tasks are in "rendezvous." In each instance
above, those actions have been reduced to a single assignment statement,
whereby the input item supplied by the caller is explicitly copied into
a local variable belonging to the server. Once this has been
accomplished, both processes may again proceed independently. Thus, the
objective has been (as it will continue to be throughout this
presentation) to maximize the degree of logical concurrency within the
system as a whole.

On grounds of efficiency, the copying necessarily associated with
this transmission of information between processes might at first seem
to be a cause for concern (especially since the types ARG and RES were
declared as arrays, suggesting that such items could be quite large
blocks of data). If these copies are to be avoided, however, then the
entire application may as well be formulated as a single (main) task:

procedure Application is

type ARG is array ... of ... ;
type RES is array ... of ... ;

AA: ARG;
RR: RES;

procedure Acquire(A:out ARG) is
procedure Transform(A:in ARG; R:out RES) is ...
procedure Dispose(R:in RES) is ...

begin
loop

Acquire(AA);
Transform(AA,RR);
Dispose(RR);

end loop;
end Application;

Whereas this definition still shows only the steady-state operation, it
can be seen that the system has now become totally sequential;
acquistion of a new item does not begin until the transformation, and
indeed the disposition, of the previous one has been completed. With
such an approach, no concurrency is present (or possible at this level).
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3.2.1.2. Startup and Shutdown

Returning to the multi-task formulation of our example, we are now
ready to address the issues of process initiation and termination, which
provide the basis for defining startup and shutdown of the overall
system.

From a careful reading of the Ada Reference Manual 19.31, it may
be ascertained that the first steady-state definition of this system, as
developed above, presents no particular problems insofar as startup is
concerned. Its constituent processes, specified in the context of the
main program Application, are initiated implicitly as a consequence of
the corresponding task declarations, whereupon each of these tasks (as
defined by their associated bodies) then proceeds as a parallel path of
execution. Although the language does not specify an order in which such
tasks are activated, this turns out not to matter so long as their
interactions are entirely confined to synchronous communication (via the
entry call/accept mechanism). When this rule is respected, it will in
general be true that system startup requires no special attention, since
process initiation essentially operates in accordance with the
underlying block-structure of the language.

Unfortunately, the same principle of "benign neglect" does not
apply with respect to system shutdown. The semantics of Ada are such
that execution of a statement list appearing within most block-like
constructions (including both subprogram and task bodies, but excluding
the optional initialization part of a package body) is not considered
complete until all locally-declared (dependent) tasks ha7 _ terminated
[cf. LRM 9.1; in other words, there is an implicit join operation

* associated with exiting from any of these language constructs. Thus,
* even though process termination like initiation is based on the

underlying block-structure, the program designer must pay explicit
attention to ensuring that the component tasks at every level terminate
in one fashion or another, lest the entire system become suspended at
some point waiting for completion of a subtask which (inadvertently)
continues forever. For this reason, the problems ofl process termination
must always be addressed as an integral part of program design. It will
be seen, moreover, that these considerations often play a quite critical
role in the overall structuring of any given system.

Examining the previously developed definition for the steady-state
operation of our example, it can be seen that the system as formulated
so far will indeed never shut down; this is hardly surprising, since
each of the task bodies for its constituent processes was initially
expressed in terms of an infinite loop.

S 
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When it comes to deciding the basis for effecting shutdown in the
context of our example, we are in fact facing one of the more difficult
problems involved in system (as opposed to program) design. It is well
known that the issues which arise in conjunction with both the startup
and shutdown of any concurrent sytem are often far more complex than
those which pertain to its steady-state operation. For this reason, it
will in general be necessary to consider a number of alternative
strategies in this area before settling upon one particular approach. We
shall, however, defer the discussion of such alternatives to a later
section and adopt, for the moment, what is presumably the most intuitive
strategy, namely to shut the system down once the Producer process has
determined (by some purely local criterion) that the last item of input
has been transmitted; we therefore refer to this mode of operation as
"input-driven." The constraint we wish to impose in this connection,
however, is that the shutdown of our system will be "graceful" -- i.e.,
that all of its constituent processes will terminate properly, but only
after the result corresponding to the last input argument has been
delivered by the Transducer process and this result has been duly
disposed of by the Consumer process.

To sir.olify the presentation, we shall express the decision as to
whether the in.put has been exhausted in terms of a local loop counter,
whereupon the body of the Producer task may be reformulated as follows:

task body Producer is
AA: ARG;
procedure Acquire(A:out ARG) is .

begin
for N in range ... loop

Acquire(AA);
Transducer.Send(AA);

end loop;
end Producer;

Thus, the Producer process terminates normally after some specified
number of argume:its have been sent to the Transducer. The problem then
becomes one of ensuring the proper termination of the processes which
are "downstream," once they have also completed action on the last item
of information in the pipeline. We reject here the trivial solution of
merely introducing a separate local counter (with the same range) into
the bodies of the Transducer and Consumer tasks as well, since this
would be tantamount to sharing "global" knowledge amongst all of the
constituent processes (thereby violating our requirement that shutdown
should be based on a determination made solely by the Producer). We are
therfore obliged to resolve this problem by other means, necessarily
involving more explicit formsof synchronization.

-21-
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At this stage we have now provided for explicit termination of the
Producer task (by means of a simple loop counter) but, for the moment,
left both the Transducer and Consumer tasks as first formulated (in
terms of an infinite loop). It is instructive to consider here exactly
why the system so defined fails to shut down as desired. With regard to
the flow of information, it can be seen that the Transducer and then the
Consumer will indeed successfully. complete action upon the last data
item delivered by the Producer. However, both the downstream processes
will subsequently block, awaiting transmission of the next item to be
processed; each will wait forever, -because there are no further
arguments to come from the Producer (which has terminated) nor,
therefore, will any more results be transmitted from the Transducer to
the Consumer. Thus, neither of the latter processes will ever terminate
(since the corresponding tasks will simply wait indefinitely on their
respective accept statements) . In consequence the overall system will
remain deadlocked in this waiting state (i.e*., execution of the main
program Application will never be complete, owing to the fact that some
of its component tasks do- not terminate).

The problem encountered at this point is merely another
manifestation of the issue that always arises in conjunction with
pipeline systems like the present example -- namely, how to signal (or
otherwise detect) an end-of-transmission, such that the processes
waiting downstream do not remain forever blocked in that state. This
problem may be resolved in several different ways.

A very common approach is to transmit some distinguishable
end-of-stream marker in place of (or in addition to) the expected data
'-tem. In the current context, this might for instance be accomplished
either by declaring each of the types ARG and RES to be a variant record
structure or, alternatively, by specifying some form of status indicator
as a second parameter to the Send entry of both the Transducer and
Consumer tasks. We shall leave the corresponding Ada formulations as arn
exercise for the reader, since neither is particularly difficult to
program (though both lead to certain language complexities and/or
run-time overhead in their own right). We note, however, that all such
"data-directed" approaches involve passing additional information as
part of every transaction between communicating processes, whereby the
encoding conventions also serve to ensure the requisite synchronization
(e.g., to trigger shutdown). This ma be acceptable (or necessary) in
many situations, but our interest here is rather to illustrate how the
same effect may be achieved more directly, by means of appropriate
control signals.
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The potential for deadlock as described above, where a substask
ends up waiting indefinitely on an accept statement when it should
simply terminate normally, is so prevalent that Ada provides a special
language feature to aid in programming orderly shutdown under these
conditions. The basic principle is to replace every such accept
statement by a selective wait statement having a "terminate" branch.
This latter alternative (which may also appear in multiple selective
waits) causes immediate termination of the associated task; it can be
selected if and only if all other tasks in the same context are either
already terminated or waiting on a similar open alternative [of. LRM
9.7.1]. This permits the problem of shutting down our example system to
resolved by so reformulating the Transducer and Consumer task bodies:

task body Transducer is
AA: ARG;
RR: RES;
procedure Transform(A:in ARG; R:out RES) is ...

begin
loop

select
accept Send(A:in ARG) do

AA := A;
end;
Transform(AA;RR);
Consumer.Send(RR);

or
terminate;

end select;
end loop;

end Transducer;

task body Consumer is
RR: RES;
procedure Dispose(R:in RES) is ...

begin
loop

select
accept Send(R:in RES) do

RR := R;
end;
Dispose(RR);

or
terminate;

end select;
end loop;

end Consumer;
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When this specialized facility is employed, the synchronization
required to achieve proper termination is provided by an implicit
(language-defined) signal. Conceptually, a built-in condition is raised
whenever all "active" processes in a given system have separately (and
for whatever reasons) come to the end of their own execution; this event
is only acknowledged, however, when every other "passive" process of
that system has also entered a quiescent state (being ready either to
accept further communication or, alternatively, to complete its
execution as well), whereupon the entire system can be shut down in a
fully synchronous fashion. In our example as now formulated, such a
signal is effectively generated by termination of the Producer process
(once it has successfully transmitted the last input argument to the
Transducer), but termination of the overall system is deferred until
both the Transducer and Consumer processes have reached their respective
quiescent states. It may or may not be obvious that this latter property
is sufficient to ensure that the last result will indeed be properly
disposed of by the Consumer before shutdown. The argument, based on the
rendezvous semantics of Ada, goes as follows:

1. The Producer cannot terminate until it has completed
transmission of the last argument to the Transducer.

2. The Transducer cannot re-enter its selective wait until it has
transmitted the corresponding result to the Consumer.

3. The Consumer cannot re-enter its selective wait until it has
finally disposed of the last result from the Transducer.

Only after all three of these conditions have been satisfied can the
system shut down -- whence it will (eventually) do so gracefully, as we
have required.

Whereas the language mechanism employed above may at first strike
one as something of a trick, it nonetheless provides not only further
insight into the general problem of termination but also a ready-made
solution, at least in certain simple cases. As such, it should always be
given due consideration, even if it is finally rejected because of
certain accompanying drawbacks. Among these lptter is the fact that it
forces the program designer to reason about all of the constituent
processes at once in order to ensure shutdown of the system as a whole.
It would be preferable, from a methodological viewpoint, to be able to
think more in terms of the separate transactions between individual
processes that directly communicate with each other (applying the
prirciple of divide and conquer). Moreov;er, it may be observed that this
approach to termination is ultimately based upon another form of
centralized knowledge (embodied in the run-time support system for the
language, which is capable of determining the state of every component
task in the system); this is contrary to the overall objectives pursued
here.
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For the foregoing reasons, we now wish to explore an alternative
approach to shutting down our example system, in order to show how this
effect can also be achieved by means of explicit (programmer-defined)
signals between communicating processes instead of relying upon implicit
signals -- i.e., those which underlie the particular termination
mechanism that has been built into the language. Specifically, this
alternative consists of introducing separate end-of-transmission
signals, so as to properly terminate the (logically distinct)
transactions between the Producer and the Transducer, and between the
Transducer and Consumer, respectively. Thus, such a signal will be seen
to serve the same synchronization function as an end-of-stream marker in
traditional data-directed approaches (with the potential advantage that
the requisite information need only be transmitted once, at what is
actually the end of the stream, since the desired conventions are
effectively embodied in the communication protocol itself rather than
being encoded in some concrete data representation). For the
forward-directed pattern of communication currently under consideration,
the additional control signals would be introduced as follows:

Send(A:in ARG) Send(R:in RES)

> --------- >
Producer Transducer Consumer

- --------- ,> --- ------ >
EoT EoT

These signals are necessarily directed in the same way as the calls by
which the associated data stream is transmitted, so that the initial
characteristics of the overall configuration are in no way altered (the
Producer is still an activity and the Consumer a resource, while the
Transducer continues to play its intermediary role). The introduction of
these control signals can be accommodated by simply adding the
corresponding (parameterless) entries to the Transducer and Consumer
tasks. The constituent processes of our system would then be defined by
revising both the task declarations and their associated bodies:

task Producer;

task Transducer is
entry Send(A:in ARG);
entry EoT;

end;

task Consumer is
entry Send(A:In ARG);
entry EoT;

end;
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task body Producer is
AA: ARG;
procedure Acquire(A:out ARC) is ...

begin
for N in range ... loop

Acquire(AA);
Transducer.Send(AA);

end loop;
Transducer. EoT;

end Producer;

task body Transducer is
AA: ARC;
RR: RES;
procedure Transform(A:in ARC; R:out RES) is

begin
loop

select
accept Send(A:in ARC) do

AA := A;
end;
Transform(AA,RR);
Consumer.Send(RR);

or
accept EoT; exit;

end select;
end loop;
Consumer. EoT;

end Transducer;

task body Consumer is
PR: RES;
procedure Dispose(R:in RES) is ...

begin
loop

select
accept Send(R:in RES) do

RR :z R;
end
Dispose(RR);

or
accept EoT; exit;

end select;
end loop;

end Consumer;
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For this alternative formulation, the property of graceful
shutdown can be established by exactly the same arguments as for the
previous approach (based on implicit signals). Furthermore, it may be
seen that the basic structure of these two solutions is essentially
identical. The only fundamental difference is that, in this second
formulation above, the necessary synchronization is programmed
explicitly: at the end of each separate data stream, the originating
process transmits a mutually agreed upon control signal (here called EoT
in both cases) to the receiver with which it has been communicating; the
originator then awaits confirmation of this signal, after which it
terminates normally of its own accord (as do all of the downstream
processes as well, each in their own time).

Thus, by contrast with the first solution, this explicit approach
to shutting down the system might also be said to be more decentralized,
in that each of the constituent processes takes local responsibility for
properly terminating whatever transactions it has previously initiated,
prior to completing its execution. (We note that such a discipline is
entirely precluded by the built-in mechanism of Ada, since selection of
a terminate alternative causes immediate termination of the task in
question, leaving no opportunity for further communication or any other

It should be pointed out that both solutions developed above

depend critically upon the fact that all communication between processes
is carried out in a synchronous fashion (based primarily upon the
rendezvous semantics of the language). With regard to actually
transferring data from one independent process to another, the need for
some such synchronization is presumably obvious. Our requirement for
graceful shutdown of the system has made synchronizing the termination
of its constituent processes equally essential (irrespective of whether
this is accomplished explicitly or implicitly). Consequently, any
attempt to terminate the downstream processes asynchronously -- for
instance, by raising the FAILURE exception in 'the corresponding tasks --
would be wholly inappropriate (because it could not then be guaranteed
that the items already in the pipeline were processed to completion);
the same argument applies (with even greater force) to use of the abort
statement.

A final lesson to be learned from the more general termination
problem addressed here is that the program designer should always be
exceedingly suspicious of an isolated accept statement, as opposed to a
selective wait which makes some provision for shutdown, unless it can be
argued with absolute conviction that the system will never be blocked
indefinitely in a waiting state at such points.
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3.2.2. Backward-Directed Communication

At this point, we return to an examination of alternative
approaches to interprocess communication within the framework of our
example system. We shall now consider the second of the simple
structures originally proposed in Fig. 3-2, depicted as follows:

II I I

Recv(A:out ARG) ',Recv(R:out RES)
Producer <---------------- Transducer < ---------------- Consumer

This pattern of communication was referred to as "backward-directed,"
because the flow of control goes in the opposite direction from the flow
of information. Thus, in constrast to the forward-directed pattern
adopted initially, the downstream processes have the initiative here; in
effect, they actively solicit successive data items by calling on their
respective suppliers, rather than passively accepting delivery from
upstream. On an intuitive basis, this particular approach would appear
to be every bit as plausible as the one we first considered.

It can be seen that the configuration shown above is just a mirror
image of the system which resulted from our previous decision to
structure all communications in a forward-directed fashion. As such, the
outside processes have merely switched roles: the Consumer has become an
activity whereas the Producer in now a resource; as before, the
Transducer is neither an activity nor a resource, but continues to be
cast in its intermediary role.

From the communication pattern established by the above diagram,
we can once more derive a correpsonding programmatic formulation wherein
the constituent processes of the system are directly represented in
terms of Ada tasks. These would now be specified (still within the
declarative part of the main program Application) by the following
declarations:

task Producer is
entry Recv(A:out ARG);

end;

task Transducer is
entry Recv(R:out RES);

end;

task Consumer;
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3.2.2.1. Steady-State Operation

We shall again proceed by first developing a simple definition for
the steady-state operation of our system. The following task bodies will
serve to exhibit the backward-directed pattern of communication
considered here:

task body Producer is
AA: ARG;
procedure Acquire(A:out ARG) is ...

begin
loop

Acquire(AA);
accept Recv(A:out ARC) dc

A := AA;
end;

end loop;
end Producer;

task body Transducer is
AA: ARG;
RR: RES;
procedure Transform(A:in ARC; R:out RES) is ...

begin
loop

Producer.Recv(AA);
Transform(AA,RR);
accept Recv(R:out RES) do

R :: RR;
end;

end loop;
end Transducer;

task body Consumer is
RR: RES;
procedure Dispose(R:in RES) is ...

begin
loop

Transducer.Re (RR);
Dispose(RR);

end loop;
end Consumer;

It can be seen that this steady-state definition is essentially
identical to that which was first developed for the forward directed
pattern. Only the entry call and accept statements are "inverted,"
reflecting the reversed direction of communication. As might be
expected, the copies associated with transmitting data between processes
still cannot be avoided except by sacrificing all logical concurrency.
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3.2.2.2. Startup and Shutdown

Having thus developed a second formulation for the steady-state
operation of' our example system, we must once more address the problems
of startup and shutdown for this alternative, backward-directed
configuration. As with the forward-directed approach introduced
initially, it turns out that startup requires no special attention. All
three constituent processes of the system defined above are initiated
implicitly, as a consequence of the corresponding task declarations. The
order of initiation is again immaterial, since these tasks communicate
solely by means of entry calls. This discipline ensures that the
necessary synchronization will be established from the outset, whatever
the direction of that communication.

With respect to- shutdown, however, we shall encounter a rather
pleasant surprise in the present context, at least when compared to the
potential proolems associated with the pattern of communication
considered previously. Of course, there is still a need to adopt some
basis for terminating execution of the Application program Ps a whole
(since the steady-state definition for each of its component tasks
involves an indefinite loop). For the time being, we shall continue to
consider only a basic input-driven strategy, while maintaining our
requirement that the overall system shut down gracefully (having
completely processed all data items in the pipeline). The determination
as to whether the input has been exhausted will be expressed here by the
same simple expedient, a local loop counter:

task body Producer is
AA: ARG;
procedure Acquire(A:out ARG) is ...

begin
for N in range . loop

Acquire(CAA);
accept Recv(A:out ARG) do

A := AA;
end;

end loop;
end Producer;

The surprise is that some such provision within the Producer process i.s
sufficient -- the system will now shut down exactly as desired! Despite
the fact that both the Transducer and Consumer tasks appear to loop
indefinitely, they will nonetheless terminate appropriately, albeit
exceptionally. What happens is that each of the processes representeo by
these latter tasks will effectively "commit suicide" at the proper
moment, by attempting to communicate with~ a process that has already
terminated (or is about to do so). Thus, with this approach, it is the
failure to accept further communications which provides the
synchronization required for shutdown.



The solution suggested above depends upon a judicious use of both
the tasking and the exception mechanisms of Ada. The interaction between
these separate language facilities can be summarized as follows:

- When a task terminates (regardless of how), all pending and
future calls to any of its entries will result in the raising of
a built-in exception (specifically, TASKING-ERROR) in the
context of each such caller; in general, exceptions serve to
notify a calling task of any operation that fails to complete
successully.

- When this exception (like any other) is not explicitly handled
at some level by the calling task, all of its outstanding
operations are successively terminated; this signal is thus
propagated back to the level of the task for which the exception
was raised, but no further (i.e., not to any embedding tasks).

- When an unhandled exception (of any sort) reaches the level of
the corresponding task body, execution of this latter is also
terminated exceptionally; at the level of the immediately
embedding task, however, there is no further distinction between
normal and exceptional termination of its component subtasks.

These conventions of Ada can be exploited to great advantage in the
present context, because raising of this exception then serves not only
to signal the end of a given data stream but also to trigger termination
of the receiving task when that event occurs. This is precisely the
effect which is desired to achieve graceful shutdown in our example
system as now formulated. The requisite properties may be established by
the following argument:

i. The Producer process will deliver every input argument that it
acquires to the Transducer, but when there are no more it will
not accept any further communication and so terminate normally.

2. The Transducer process will deliver to the Consumer a result for
every argument which it receives, but it will always request
further data from the Producer and thus terminate exceptionally.

3. The Consumer process will dispose of every output result which
it receives from the Transducer, tit it will always request
further data from that source and thus terminate exceptionally.

All of the constituent processes of our system will therefore complete
action on the last item of information which enters the pipeline, and
will eventually terminate (each in its own fashion). Termination of the
corresponding component tasks (for whatever reason) means that executiotn
of the main program Application -will also terminate, whereupon the
entire system will ultimately shut down just as we have required.
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The relative simplicity of the solution obtained in this instance
points up one of the primary advantages to what we have called a
backward-directed pattern of interpro-ess communication (wherein data is
effectively "pulled" rather than "pushed" downstream) . When the
receiving process is always actively requesting the next item of
information, it is in a position to be directly informed of the success
or failure of that request even if the transmitting process has already
terminated. This is to be contrasted with the opposite approach, in
which the receiver passively awaits the next item and so must somehow be
informed (either explicitly or implic,itly) that it should not wait any
longer. The axiom of a system based on backward-directed communication
is that the downstream processes are still alive so long as there are
additional items to be transmitted (whence an isolated accept statement
is not in any way dangerous); the transmitters are then structured to
ensure that they will terminate on their side instead of waiting to
accept further requests (so that their respective receivers will then be
notified when they next attempt to solicit more input).

It should also be observed that the use of an exception to achieve
this notification (and thereby trigger termination) is not at all
asynchronous, since its raising is a potential consequence of the
caller's own actions rather than of concurrent action by another process
(as would be the case if the server, for instance, were to raise the
FAILURE exception in the caller). Moreover, it is still possible for the
caller to "trap" this exception at some level, and so perform certain
finalization activities upon receiving such a signal (or even override
i4ts own termination):

task body Caller is

begin

begin

S rver.Call( ... ;

exception
when others => ...

end;

* end Caller;

* (!1o such possibility is present when the roles are reversed, and the
built-in terminate signal is used). Finally, this "suicide" method of
termination can certainly be regarded as distributed, in that it

* involves transactions between individual. communicating processes, not
some form of centralized knowledge. For these reasons, we consider this
approach to be a legitimate design option, and see no need to introduce
additional explicit signals in order to achieve shutdown in this
c-ontext.



3.2.3. Inward-Directed Communication

We now turn to the third of the simple interprocess communication
structures proposed in Fig. 3-2, depicted as follows:

ISend(A:in ARG) I Recv(R:out RES)
Producer------------------ > Transducer :<---------------- Consumer

* The above pattern of communication was referred to as "inward-directed,"
because the flow of control goes from the outside in (whereas the flow
of information is still from left to right). It is therefore the first
of the "symmetric" communication patterns to be considered, as compared
with those adopted previously, which were both asymmetric by nature.
Within such a structure, the initiative is shared by the Producer and
Consumer processes, while the Transducer process is essentially passive.
This particular approach might be appropriate, for instance, in cases
where the latter corresponds to some general-purpose utility operation

-- e.g., a complex transformation that would more typically be
predefined in an application library module for subsequent use in
several different systems.

Some such hypothesis is in fact reflected in our characterization
of the configuration shown above: here, both the Producer and the
Consumer are to be regarded as activities, but the Transducer has become
a pure resource; thus, there are no longer any processes which play an
intermediary role in this overall organizational structure.

From the pattern specified by the above diagram we may again
proceed directly to a corresponding Ada formulation. The constituent
processes of our example system would now be represented by the
following task declarations:

task Producer;

task Transducer is
entry Send(A:in ARG);
entry Recv(R:out RES);

end;

task Consumer;



3.2.3.1. Steady-State Operation

As before, we shall first establish the steady-state operation for
our system, so as to exhibit the inward-directed communication pattern
which is of interest here. This can be most simply obtained by defining
the associated task bodies as follows:

task body Producer is
AA: ARG;
procedure Acquire(A:out ARG) is ...

begin
loop

Acquire(AA);
Transducer.Send(AA);

end loop;
end Producer;

task body Transducer is
AA: ARG;
RR: RES;
procecure Transform(AA:in ARG; RR:out RES) is ...

begin
loop

accept Send(A:in ARG) do
AA := A;

end;
Transform(AA,RR);
accept Recv(R:out RES) do

R := RR;
end;

end loop;
end Transducer;

task body Consumer is
RR: RES;
procedure Dispose(R:in RES) is .

begin
loop

Transducer. Recv(RR);
Dispose(RR);

end loop;
end Consumer;

In this formulation, the Producer and Consumer tasks contain only entry
calls (reflecting their status as pure activities), while both of the
corresponding accept statements appear within the Transducer task (which
4. therefore a resource since it is the server for each of these calls).
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This initial definition for the steady-state operation of our
example has the same property which was present in previous
formulations, namely, that the transmission of information between
processes is accomplished by explicit copies (from transmitter to
receiver), so as to maximally decouple the constituent processes and
thereby achieve the greatest possible degree of logical concurrency
within the system as a whole. However, in the context of symmetric
patters of communication like that considered here, it may sometimes be
appropriate to examine various design options in order to explore
potential tradeoffs in this domain. By way of illustration, let us
imagine two different definitions for the Transducer task, which might
equally well have been introduced in place of that given above:

task body Transducer is --Option 1
RR: RES;
procedure Transform(A:in ARG; R:out RES) is ...

begin
loop

accept Send(A:in ARC) do
Transform(A,RR);

end;
accept Recv(R:out RES) do

R := RR;
end;

end loop;
end Transducer;

task body Transducer is --Option 2
AA: ARG;
procedure Transform(A:in ARG; R:out RES) is ...

begin
loop

accept Send(A:in ARG) do
AA := A;

end;
accept Recv(R:out RES) do

Transform(AA,R);
end;

end loop;
end Transducer;

For Option 1, the Producer task is held in rendezvous with the
Transducer while the argument data is transformed, thus avoiding the
need to copy this information on input; however, the corresponding
result is still transmitted by an explicit copy from the Transducer to
the Consumer. Option 2 is just the opposite. Thus, in the first option,
the combined operation of data acquisition and its ensuing
transformation conceptually proceeds in parallel with that of the final
data disposition, whereas the overlap is reversed in the second option.
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3.2.3.2. Startup and Shutdown

We must once more complete, our initial steady-state definition by
addressing the issues of startup and shutdown for the inward-directed
configuraion now under consideration. As for both the forward- and
backward-directed approaches already discussed, startup poses no special
problems. Thus we need only be concerned with how to achieve shutdown in
the present context. Insofar as the current pattern of communication is
a combination of the previous ones, we should expect to arrive at a
solution which embodies certain aspects of each. Again, we shall
confine our attention for the moment to a simple input-driven strategy,
and continue to represent this determination by a local loop counter:

task body Producer is
AA: ARG;
procedure Acquire(A:in ARG) is

begin
for N in range ... loop

Acquire(AA);
Transducer.Send(AA);

end loop;
end Producer;

Since we still want to shut our system down gracefully (i.e., process
all items in the pipeline before proper termination), we must now focus
on the downstream processes. With regard to the transactions between the
Producer and the Transducer their pattern of communication is in effect
forward-directed, and so it might seem that the "path of least
-esistancel would be to make use of the built-in termination mechanism:

task body Transducer is
AA: ARG;
RR: RES;
procedure Transform(A:in ARG; R:out RES) is ...

begin
loop

select
accept Send(A:in ARG) do

AA := A;
end;
Transform(AA:RR);
accept Recv(R:out RES) do

R := RR;
end;

or
terminate;

end select;
end loop;

end Transducer;
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With regard to the pattern of communication between the Transducer
and the Consumer, however, it can be seen that their transactions are
essentially backward-directed. As such, it might be hoped that things
would work out as for the approach where the entire system was based on
a backward-directed pattern -- i.e., that the Consumer will terminate
exceptionally by attempting to communicate with the Transducer once this
latter has terminated. Unfortunately, we are in for a very rude shock:
this will not work at all, because the Transducer task has not in fact
terminated; rather, it is merely waiting to do so once all other tasks
at this level have either terminated or are also waiting on such an
alternative. But in this situation, the Consumer task is neither
terminated nor in a quiescent state. Instead, it is actively soliciting
further data from the Transducer (and thus waiting for that entry call
to be completed). Hence, the system as a whole will eventually become
suspended in the state described, and so never shut down. This

inevitable deadlock provides a very vivid illustration of the pitfalls
associated with the implicit termination mechanism of Ada. In
particular, it serves to underscore the need to reason on a global basis
(considering all component subtasks) whenever this would-be convenience
is employed anywhere in the definition of a given system. Having learned
a lesson, we shall henceforth forgo the use of this feature altogether.

We are nonetheless left with a quite viable option for achieving
graceful shutdown, which is to introduce additional termination signals
where necessary (for forward-directed transactions); since this approach
allows the termination of a downstream process to be programmed
explicitly, we may then rely on exceptional termination in the context
of backward-directed transactions. Thus, our overall, inward-directed
configuration would then be respecified as follows:

Send(A:in ARG)
---- ----------> Recv(R:in RES)

Producer Transducer j< --------------- Consumer
------------- >!I
EoT

This diagram gives rise to the following task declarations and bodies:

task Producer;

task Transducer is
entry Send(A:in ARG);
entry EoT;
entry Recv(R:out RES);

end;

task Consumer;

-
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task body Producer is
AA: ARG;
procedure Acquire(A:out ARG) is ...

begin
for N in range ... loop

Acquire(AA);
Transducer.Send(AA);

end loop;
Transducer.EoT;

end Producer;

task body Transducer is
AA: ARG;
RR: RES;
procedure Transform(A:in ARG; R:out RES) is ...;

begin
loop

select
accept Send(A:in ARG) do

AA := A;
end;
Transform(AA,RR);
accept Recv(R:out RES) do

R := RR;
end;

or
accept EoT; exit;

end select;
end loop;

end Transducer;

task body Consumer is
RR: RES;
procedure Dispose(R:in RES) is ...

begin
loop

Transducer. Recv(RR);
Dispose(RR);

end loop;
end Consumer;

This definition does indeed combine aspects of both the forward-directed
solution (based on explicit signals) and the backward-directed solution
(involving exceptional termination) in order to shut down the overall
system, Just as we expected at the outset. (Analogous modifications
could easily be introduced in the context of optional formulations for
the Transducer as discussed above, if it were 'desired to partially
restrict the degree of logical concurrency within the system).
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3.2.4. Outward-Directed Communication

We shall now consider the fourth and last of the simple structures
for our example system which were originally proposed in Fig. 3-2,
depicted as follows:

RecvCA:out ARG) Send(R:in RES)
Producer :<---------------- Transducer------------------ > Consumer

This pattern of communication was referred to as "outward-directed,"
because the flow of control goes from the inside out (though information
still flows from left to right). Like the inward-directed approach just
considered, the above pattern may also be said to be symmetric. It can
be seen that in this instance, the initiative lies entirely with the
Transducer process, since both the Producer and Consumer processes play
an essentially passive role. Such an approach may seem, in some
respects, to be the most intuitive of all, particularly if one were to
think of the overall application program as being primarily embodied in
the Transducer, and to view the Producer and Consumer solely as
abstractions for some input source and output sink, respectively.

This viewpoint is once more reflected in our characterization of
the configuration shown above: the Transducer is now the only activt
in the system, whereas both the Producer and the Consumer are pure
resources; thus, no process plays the mixed role of an intermediary in
this organizational structure.

As usual, the above diagram serves as a specification for the
desired communication pattern, from which we may derive declarations for
the Ada tasks representing the constituent processes in the present
configuration:

task Producer is
entry Recv(A:out ARG);

end;

task Transducer;

task Consumer is
entry Send(R:in RES);

end;
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3.2.4.1. Steady-State Operation

According to our well established method, we shall first define
the steady-state operation of the system, so as to exhibit the
outward-directed pattern under consideration. In their simplest form,
the associated task bodies would be as follows:

task body Producer is
AA: ARG;
procedure Acquire(A:out ARG)'is ...

begin
loop

Acquire(AA);
accept Recv(A:out ARG) do

A := AA;
end;

end loop;
end Producer;

task body Transducer is
AA: ARG;
RR: RES;
procedure Transform(A:in ARG; R:out RES);

begin
loop

Producer.Recv(AA);
Transform(AA,RR);
Consumer.Send(RR);

end loop;
end Transducer;

task body Consumer is
RR: RES;
procedure Dispose(R:in RES) is ...

begin
loop

accept Send(R:in RES) do
RR := R;

end;
Dispose(RR);

end loop;
end Consumer;

This formulation is to be compared with that introduced initially for
the inward-directed pattern considered previously: as might be expected,
they differ only that the entry calls and accept statements have again
been inverted, thereby reversing the direction of communication.
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Consistent with our overall objectives, this first definition is
specifically intended to preserve the highest possible degree of logical
concurrency within the system as a whole, whence information is
transmitted between communicating processes by means of explicit copies.
Again, however, one might wish to consider coupling the operation of
these processes more tightly in certain circumstances, so as to be able
to avoid such copying. This could be selectively accomplished by
reformulating either the Producer or the Consumer task bodies as
follows:

task body Producer is --Option 1
procedure Acquire(A:out ARG) is ...

begin
loop

accept Recv(A:out ARG) do
Acquire(A);

end;
end loop;

end Producer;

task body Consumer is --Option 2
procedure Dispose(R:in RES) is ...;

begin
loop

accept Send(R:in RES) do
Dispose(R);

end;
end loop;

end Consumer;

With Option 1, the Transducer is held in rendezvous with the Producer
while each new argument is acquired, thereby avoiding a copy of this
information on input but sacrificing potential overlap of the data
acquisition and transformation operations. Option 2, on the other side,
is analogous: the Transducer is held in rendezvous with the Consumer
while each successive result is disposed of, thereby avoiding a copy of
this information on output but sacrificing potential overlap of the data
transformation and disposition operations. From the standpoint of
program design, it may or may not be advantageous to resort to one of
these options in a given applications context. What must be emphasized,
however, is that if both options are exercised together, then the
operation of the o-verall system will in fact become completely
sequential (and so might just as well have been formulated as a single
process in the first place).
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3.2.4.2. Startup and Shutdown

As always, we must now complete our definition for the system
configuration currently considered by adapting the initial steady-state
formulation so as to address the problems of startup and shutdown.
Startup again requires no further attention, whence we need only be
concerned with graceful shutdown.

Keeping still to the simple input-driven strategy adopted thusfar,
we know that we must begin by first making suitable provisions within
the Producer process, such that the corresponding task will terminate
normally when all input arguments have been transmitted. Looking then
to the downstream processes, we should like to be able to reason in
terms of the separate transactions involved, between the Producer and
the Transducer and between the Transducer and the Consumer,
respectively. As for the former, we observe that their pattern of
communication is backward-directed, whereupon we may make use of the
exception mechanism to trigger termination of the Transducer task (once
the Producer refuses to accept any further communication). With regard
to the communication between the Transducer and the Consumer, their
transactions are forward-directed. As such, we must either rely upon the
built-in termination mechanism of Ada, or introduce an explicit signal
in order to properly terminate the Consumer task. Having advised against
use of the implicit mechanism (even though it would work in this
particular instance), we shall thus opt here for explicitly programmed
termination. The overall specification for the present system
configuration may therefore be established as follows:

Send(R:in RES)
Recv(A:out ARG)--------->

Producer :<---------------- Transducer Consumer
------------ >

___________ ___________ EoT_ _ _ _ _ _

The corresponding task declarations (adding the EcT entry to the
Consumer) would therefore become:

task Producer is
entry Recv(A:out ARG);

end;

task Transducer;

task Consumer is
entry Send(R:in RES);
entry EoT;

end;



The constituent processes would then finally be defined as follows:

task body Producer is
AA: ARG;
procedure Acquire(A:out ARG) is ...;

begin
for N in range ... loop

Acquire(AA);
accept Recv(A:out ARG) do

A := AA;
end;

end loop;
end Producer;

task body Transducer is
AA: ARG;

RR: RES;
procedure Transform(A:in ARG; R:out RES) is ...

begin
loop

Producer.Recv(AA); -- can fail!
Transform(AA,RR);
Consumer.Send(RR);

end loop;
exception

when others => Consumer.EoT;
end Transducer;

task body Consumer is
RR: RES;
procedure Dispose(R:in RES) is ...;

begin
loop

select
accept Send(R:in RES) do

RR := R;
end;
Dispose(RR);

or
accept EoT; exit;

end select;
end loop;

end Consumer;

By explicitly handling the exception raised by the Producer, the
Transducer takes local responsibility for closing out its transactions
with the Consumer; a further consequence of this approach is that all
processes of the system turn out, in,the end, to terminate normally.
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3.3. Alternative Shutdown Strategies

In each of the simple patterns of interprocess communication
considered up to this point, 'we have seen that our requirement for
graceful shutdown of the overall system gave rise to a need for further
synchronization. As such, the problem of proper termination always
played a crucial role in establishing the final program design. In
several instances, it ultimately led us to modify the initial pattern of
communication by adding explicit signals so as to be able to achieve the
desired effect; ir others, we were content to rely upon an implicit
signal, corresponding to the built-in exception which is raised by
trying to communicate with a task that has already te-minated. Whereas
the "best" solution differed according to the particular communication
pattern chosen as a point of departure, with every approach our design
was not complete until we had adequately addressed the problem of
synchronous shutdown.

It should be remembered, however, that we have so far examined
just one possible basis for shutting down the simple system taken as our
example -- namely, to terminate execution of the entire application once
it has somehow been determined that all available input items have been
processed to completion (a strategy which we have thus referred to as
"input-driven"). While this is certainly a reasonable basis, it must be
recognized as only one amongst many alternative itrategies that are
commonly adopted in practice. Before attempting to draw any general
conclusions in this regard, it would therefore seem advisable to explore
various alternative approaches. In so doing, we shall abandon our usage
of a simple loop counter, and instead express the termination decision
in terms of a local predicate on the data itself, which determines
whether some appropriate (but unspecified) "cuf-off" criterion has been
attained. This (presumably more realistic) formulation would have
appeared, in the conteyt of the input-driven approaches already
considered, as follows:

task body Producer is
AA: ARG;
procedure Acquire(A:out ARG) is ...
function CutOff(A:in ARG) reCurn BOOLEAN is ...;

begin
loop

Acquire(AA);
exit when CutOff(AA);
... rTransmit AA to Transducer] ...

end loop;

end Producer;
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3.3.1. Input-Driven Strategy

In that this alternative was adopted as a basis for discussion of
system shutdown in the previous section, a number of distinct solutions
have already been developed there. These are summarized in Fig. 3-3.

(1) Forward-Directed:

Send(A:in ARG) SendCR:in RES)
-------------- I >I--------------- --

Producer :Transducer ;Consumer
----------------- I >------------, >:

I _ _ __ _ _ EoT _ _ _ _ _ __ EoT_ _ _ _ _ _

(2) Backward-Directed:

Recv(A:out ARG)? I Recv(R:out RES)?:I
Producer < ---------------- Transducer <(---------------- Consumer

(3) Inward-Directed:

Send(A:in ARC)
--------- > RecvCR:out RES)?:I

Producer Transducer <---------------- Consumer
------------ ' >;I

_ _ _ _ _ _ EoT _ _ _ __ _

(4) Outwarci-Directed:

I i SendCR:in RES)
IRecv(A:out ARG)?: ------------ >

Producer 1<---------------- Transducer Consumer
--------------- I >I

_ _ _ _ _ _ _ _ _ _ _ _ _ EoT _ _ _

Figure 3-3: Possible Communication Patterns for input-Driven Strategy.

The symbol I'?" in the above specifications is a convention to be used
from here on to indicate transactioins that are expected to fail (i.e.,
to result in the raising of an exception) upon termination of the
corresponding server process.
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3.3.2. Output-Driven Strategy

We wish now to explore another equally common strategy for
shutting down pipeline systems like the present example, namely to
terminate execution once some cut-off criterion has been detected on the
output side. We therefore refer to this alternative as "output-driven,"
in that the determination is made by the process which lies at end of
the line. Thus, in this instance the decision is to be embodied in the
Consumer, which will have the following skeleton form:

task body Consumer is
RR: RES:
procedure Dispose(R:in RES) is ..
function CutOffCR:in RES) return BOOLEAN is..

begin
loop

... [Receive RR from Transducer] ...

exit when Cut~ff(RR);
Dispose(RR);

end loop;

end Consumer;

The fundamental problem which arises in this context is that a suitable
termination signal must somehow be propagated back upstream -- against
the flow of information -- so as to systematically shut down the
processes that are passing along, and ultimately generating, the data
items in the pipeline.

Whereas we still want to impose a requirement for graceful
shutdown of our overall system, as we did in the context of a simple
input-driven approach, some care must now be taken to define exactly
what we mean by gracefully. Previously, we required that all items which
entered the pipeline were processed to completion before proper
,termination. If we were to make the same demand for an output-driven
strategy, it would have one of two implicatons: either the operation of
these communicating processes must be so tightly coupled that the
ultimate consumer can immediately cut off further data generation at the
source (which would effectively preclude any logical concurrency
whatsoever); or, alternatively, the final process must be prepared to
accept additional data items, after the cut-off condition has been
detected, so as to allow the pipeline to be progressively drained. We
choose to reject both of these possibilities, and instead to require
only that no further items will be received by the Consumer and that all
of the constituent processes will eventually terminate in a proper
fashion, such that the system as a whole can be shut down synchronously.
Hence, in terms of the bucket-brigade analogy, we are willing to admit
that "some water will be spilled" once the decision has been made.
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From our previous experience in the context of an input-driven
strategy, we know that there are in fact four different solutions which
might be considered, based on the particular pattern of communication
which is adopted for the steady-state operation of the system as a
whole. These four possibilities are as specified in Fig. 3-4.

(1) Forward-Directed:

Send(A:in ARG)? Send(R:in RES)?
Producer ----------------- > Transducer ---------- > Consumer

(2) Backward-Directed:

Recv(A:out ARG) Recv(R:out RES)
---------------------------- 1--------

Producer Transducer : 1 Consumer
< .----------------- <----------------

_ EoR _ EoR

(3) Inward-Directed:

Recv(R:out RES)

Send(A:in ARG)? <
Producer ---------- >1 Transducer ! Consumer

<----------------
EoR

(4) Outward-Directed:

Recv(A:out ARG)
< ---------------- Send(R:in RES)? 1

Producer Transducer >-------- Consumer
----------------------------------

_ EoR

Figure 3-4: Possible Communication Patterns for Output-Driven Strategy.

It may be observed that each configuration depicted in Fig. 3-4
corresponds to the mirror image of that for the opposite communication
pattern in the input-driven context (cf. Fig. 3-3), which is indicative
of the true relationship between these alternative shutdown strategies.
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From the specifications in Fig. 3-4, we can directly derive the
corresponding task declarations for each of these four solutions:

(1) Forward-Directed: task Producer; -- an activity

task Transducer is
entry Send(A:in ARG);

end;

task Consumer is -- a resource
entry Send(R:in RES);

end;

(2) Backward-Directed: task Producer is -- a resource
entry Recv(A:out ARG);
entry EoR;

end;

task Transducer is
entry Recv(R:out RES);
entry EoR;

end;

task Consumer; -- an activity

(3) Inward-Directed: task Producer; -- an activity

task Transducer is -- a resource
entry Send(A:in ARG);
entry Recv(R:out RES);
entry EoR;

end;

task Consumer; -- an activity

(4) Outward-Directed: task Producer is -- a resource
entry Recv(A:out ARG);
entry EoR;

end;

task Transducer; -- an activity

task Consumer is -- a resource
entry Send(R:in RES);

end;

We shall now present the associated process definitions for all four
solutions in turn, formulated so as to maximize the logical concurrency.
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(1) For the forward-directed pattern, the definitions are as follows:

task body Producer is
AA: ARG;
procedure Acquire(A:out ARG) is ...

begin
loop

Acquire(AA);
Tran-ducer.Send(AA); -- ?

end loop;
end Producer;

task body Transducer is
AA: ARG;
RR: RES;
procedure Transform(A:in ARG; R:out RES) is ...

begin
loop

accept Send(A:in ARG) do
AA := A;

end;
Transform(AA,RR);
Consumer.Send(RR); -- ?

end loop;
end Transducer;

task body Consumer is
RR: RES;
procedure Dispose(R:in RES) is ...
function CutOff(R:in RES) return BOOLEAN is ...

begin
loop

accept Send(R:in RES) do
RR := R;

end;
exit when CutOff(RR);
Dispose(RR);

end loop;
end Consumer;

The above definitions directly exhibit how the shutdown signal is
propagated back upstream (and the "spillage" involved). Once a result is
received which satisfies the cut-off criterion, it is not disposed of by
the Consumer, but rather this process simply terminates. In consequence,
the next (already transformed) item in the pipeline will not be
successfully transmitted by the Transducer, but instead this process
will also terminate (exceptionally). Finally, the same fate awaits the
last argument acquired by the Producer, where an unsuccessful attempt to
transmit that item again leads to exceptional termination -- and thus to
shutdown of the entire system.
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(2) For the backward-directed pattern, the definitions are as fo~llows:

task body Producer is
AA: ARG;
procedure Acquire(A:out ARG) is..

begin
loop

AcquireCAA);
select

accept Recv(A:out ARG) do
A :=AA;

end;
or

accept EoR; exit;
end select;

end loop;
end Producer;

task body Transducer is
AA: ARG;
RR: RES;
procedure Transform(A:in ARG; R:out RES) is'..

begin
loop

Producer. Recv(AA);
TransformCAA,RR);
select

accept Recv(R:out RES) do
R :=RR;

end;
or

accept EoR; exit;
end select;

end loop;
Producer . EoR;

end Transducer;

task body Consumer is
RR: RES;
procedure Dispose(R:in RES) is..
function CutOff(R:in RES) return BOOLEAN is..

begin
loop

Transducer.Recv(RR);
exit when CutOffCRR);
Dispose(RR);

end loop;
Transducer. EoR;

end;



(3) For the inward-directed pattern, the definitions are as follows:

task body Producer is
AA: ARG;
procedure Acquire(A:out ARG) is

begin
loop

Acquire(AA);
Transducer.Send(AA); -- ?

end loop;
end Producer;

task body Transducer is
AA: ARG;
RR: RES;
procedure Transform(A:in ARG; R:out RES) is

begin
loop

accept Send(A:in ARG) do
AA := A;

end;
Transform(AA,RR);
select

accept Recv(R;out RES) do
R := RR;

end;
or accept EoR; exit;

end select;
end loop;

end Transducer;

task body Consumer is
RR: RES;
procedure Dispose(R:in RES) is
function CutOff(R:in RES) return BOOLEAN is ...

begin
loop

Transducer. Recv(RR);
exit when CutOff(RR);
Dispose(RR);

end loop;
Transducer. EoR;

end;

The difference betweer the input-driven and output-driven strategies can

perhaps best be seen here by comparing the structure of the Transducer
as defined above with its corresponding formulation at the end of
Section 3.2.3.2 (note, however, that their steady-state operation is in
fact identical).
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(4) For the outward-directed pattern, the definitions are as follows:

task body Producer is
AA: ARG;
procedure Acquire(A:out ARG) is ...

begin
loop

Acquire(AA);
select

accept Recv(A:out ARG) do
A := AA;

end;
or

accept EoR; exit;
end select;

end loop;
end Producer;

task body Transducer is
AA: ARG;
RR: RES;
procedure Transform(A:in ARG; R:out RES) is ...

begin
loop

Producer.Recv(AA);
Transform(AA,RR);
Consumer.Send(RR); -- ?

end loop;
exception

when others => Producer.EoR
end Transducer;

task body Consumer is
RR: RES;
procedure Dispose(R:in RES) Is ...
function CutOff(R:in RES) return BOOLEAN is

begin
loop

accept Send(R:in RES) do
RR := R;

end;
exit when CutOff(RR);
Dispose(RR);

end loop;
end Consumer;

The difference between the input- and output-driven shutdown strategies
is even more evident here when the Transducer as defined above is
compared with its counterpart as formulated at the end of Section
3.2.4.2.
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3.3.3. Transit-Driven Strategy

Another shutdown strategy that is typically encountered in the
context of pipeline systems like our present example (and the last to be
considered in detail here) is one in which the termination decision is
made somewhere in passage, by one of the processes serving to convey
successive data items from their original source to their final
destination. We therefore refer to this particular alternative as
lltran. it-driven."

Within the current framework, such a strategy necessarily implies
that 'the determination must be made by the Transducer process. For
purposes of illustration, we shall adopt yet another approach for
programming the actual decision -- namely to add an additional output
parameter to the transformation procedure, which serves as a "status
return" (i.e., indicating whether or not the transform in question was
successful, according to some purely internal criterion). Thus, the
definition of the Transducer process will then appear in skeleton form
as follows:

task body Transducer is
AA: ARC;
RR: RES;
OK: BOOLEAN;
procedure Transform(A:in ARG; R:out RES; S:out BOOLEAN) is ... ;

begin
loop

[. Receive AA from Producer]
Transform(AA, RR, OK);
exit when not OK;

..[Transmit RR to Consumer]) .
end loop;

end*Transducer;

Expressed in this fashion, the Transducer may be viewed as a "valve," in
that it acts to shut off the flow of information once a certain (locally
defined) termination condition has been detected.

The strategy now considered can be seen as more of a mixed one,
combining aspects of both the input-driven and output-driven approaches
introduced previously. In particular, the application should be expected
to behave like an output-driven system on the upstream side (before the
decision is made) and like an input-driven system downstream from there.
Hence the requirement for graceful shutdown to be imposed here will be
taken to exactly reflect these expectations.
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Again, we know that there are in fact four separate solutions, all
of which might be deemed equally acceptable. These possibilities, based
on different patterns of communication for the steady-state operation of
the overall system, are as specified in Fig. 3-5.

(1) Forward-Directed:

1 Send(R:in RES)

1 Send(A:in ARG)? ...... >
Producer ---------- > Transducer Consumer

-------------- >I EoT

(2) Backward-Directed:

Recv(A:out ARG)
< ------------ Recv(R:out RES)?!

Producer Transducer 1< ---------------- Consumer
<--------------

_ EoR

(3) Inward-Directed:

Send(A:in ARG)? Recv(R:out RES)?
Producer >-------> Transducer < ---------------- Consumer

(4) Outward-Directed:

Recv(A:out ARG) .Send(R:in RES)
-------------------------- i :--------

Producer Transducer 1 Consumer
< -------------- >1
EoR EoT

Figure 3-5: Possible Communication Patterns for Transit-Driven Strategy.

The configurations specified above do indeed depict the mixed nature of
a transit-driven shutdown strategy: in all four patterns, the
transactions on the left are the same as for the output-driven approach
(cf. Fig. 3-4), whereas those on the right are the same as for the
input-driven case (cf. Fig. 3-3).
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We can again directly derive the corresponding task declarations
for each of these four solutions from their specifications in Fig. 3-5.

(1) Forward-Directed: task Producer; -- an activity

task Transducer is
entry Send(A;in ARC);

end;

task Consumer is -- a resource
entry Send(R:in RES);
entry EoT;

end;

(2) Backward-Dii~cted: task Producer is -- a resource
entry Recv(A:out ARC);
entry EoR;

end;

task Transducer is
_-_ entry Recv(R:out RES);

end;

task Consumer; -- an activity
---- ---- ---- --- ------ - - - - - - - - - - - - - - - - -

(3) Inward-Directe* task Producer; -- an activity

task Transducer is -- a resource
entry Send(A:in ARG);
entry Recv(R:out RES);

end;

task Consumer; -- an activity

(4) Outward-Directed: task Producer is -- a resource
entry Recv(A:out ARC);
entry EoR

end;

task Transducer; -- an activity

task Consumer is -- a resource
entry Send(R:in RES);
entry EoT;

end;

We once more present the associate'd process definitions for all four
solutions, formulated as before so as to maximize logical concurrency.
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(1) For the forward-directed pattern, the definitions are as follows:

task body Producer is
AA: ARG;
procedure Acquire(A:out ARG) is ...

begin
loop

Acquire (AA);
Transducer.Send(AA); -- ?

end loop;
end Producer;

task body Transducer is
AA: ARG;
RR: RES;
OK: BOOLEAN;
procedure Transform(A:in ARG; R:out RES; S:out BOOLEAN) is ...

begin
loop

accept Send(A:in ARG) do
AA := A;

end;
Transform(AA, RR, OK);
exit when not OK;
Consumer.Send(RR);

end loop;
Consumer.EoT;

end Transducer;

task body Consumer is
RR: RES;
procedure Dispose(R:in P is ...

begin
loop

select
accept Send(R:in RES) do

RR := R;
end;
Dispose (RR);

or
Accept EoT; exit;

end select;
end loop;

end Consumer;
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(2) For the backward-directed pattern, the definitions are as follows:

task body Producer is
AA: ARG;
procedure Acquire(A:out ARG) is ...

begin
loop

Acquire(AA);
select

accept Recv(A:out ARG) do
A := AA;

end;
or

accept EoR; exit;
end select;

end loop;
end Consumer;

task body Transducer is
AA: ARG;
RR: RES;
OK: BOOLEAN;
procedure Transform(A:in ARG; R:out RES; S:out BOOLEAN) is ...

begin
loop

Producer. Recv(AA);
Transform(AA, RR, OK);
exit when not OK;
accept Recv(R:out RES) do

R := RR;
end;

end loop;
Producer. EoR;

end Transducer;

task body Consumer is
RR: RES;
procedure Dispose(R:in RES) is ...

begin
loop

Transducer.Recv(RR); --
Dispose(RR);

end loop;

end Consumer;
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()For the inward-directed pattern, the definitions are as follows:

task body Producer is
AA: ARG;
procedure Acquire(A:out ARC) is..

begin
loop

Acquire (AA);
Transducer.Send(AA); -

end loop;
end Producer;

task body Transducer is
AA: ARG;
RR: RES;
OK: BOOLEAN;
procedure Transform(A:in ARC; R:out RES; S:out BOOLEAN) is

begin
loop

accept Send(A:in ARC) do
AA :zA;

end;
TransformCAA, RR, OK);
exit when not OK;
accept Recv(R:out RES) do

R -=RR;
end;

end loop;
end Transducer;

task body Consumer is
RR: RES;
procedure Dispose(R:in RES) is..

begin
loop

Transducer.Recv(RR); ?-
Dispose(RR);

end loop;
end Consumer;



(4) For the outward-directed pattern, the definitions are as follows:

task body Producer is
AA: ARG;
procedure Acquire(A:out ARG) is ...

begin
loop

Acquire(AA);
select

accept Recv(A:out ARG) do
A := AA;

end;
or

accept EoR; exit;
end select;

end loop;
end Consumer;

task body Transducer is
AA: ARG;
RR: RES;
OK: BOOLEAN;
procedure Transform(A:in ARG; R:out RES; S:out BOOLEAN) is ...

begin
loop

Producer.Recv(AA);
Transform(AA, RR, OK);
exit when not OK;
Consumer.Send(RR);

end loop;
Producer .EoT;
Consumer.EoR;

end Transducer;

task body Consumer is
RR: RES;
procedure Dispose(R:in RES) is ...

begin
loop

select
accept Send(R:in RES) do

RR := R;
end;
Dispose (RR);

or

Accept EoT; exit;
end select;

end loop;
end Consumer;
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3.3.14. Other Possible Strategies

We have not yet exhausted all possible shutdown strategies. For
instance, one could adopt an "extrema-driven" approach, wherein the
termination decision is made by either the input or output process
(applying completely independent criteria). This would give a
"superposition" of those previous strategies, as specified in Fig. 3-6.

(1) Forward-Directed:

Send(A:in ARO)? Send(R:in RES)?
Producer---- >:------------>

Prdcr;1Transducer : Consumer
--------- >:------------>

_______ EoT _______ EoT

(2) Backward-Directed:

IRecv(A:out ARG)?! Recv(R:out RES)?!

Producer ; Transducer Consumer

__ __:_ _ EoR _ _ _ _ _ __ EoR_ _ _ _ _ _

(3) Inward-Directed:

SendCA:in ARG)? Recv(R:out RES)?

Producer :tTransducer ;1Consumer
----------- > <----------------

_______ EoT ________EoR______

(14) Outward-Directed:

Recv(A:in ARG)? Send(R:in RES)?
------------------------------ >

Producer Transducer Consumer
:< -------------------- >

_______ EoR _______ EoT______

Figure 3-6: Possibl~e Communicati-on Paterns for Extrema-Driven Strategy.

We feel confident, however, that the programming of these (or any other)
composite solutions in Ada can by now be left as an exercise for the
reader.
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TUTORIAL ON ADA EXCEPTIONS

by

David B. Loveman

This tutorial describes Ada's facilities for dealing with
exceptional situations, such as errors, and provides examples of the use
of these facilities. "An excption is an event that causes suspension of
normal program operatio. Draing attention to the event is called
raising the exception. Executing some actions, in response to the
occurrence of an exception, is called handling the exception." rLRM]
Chapter 11.

THE ROLE OF EXCEPTIONS

The ability of a program to handle certain exceptional situations
is essential. Such situations, typically but not necessarily errors,
occur rarely, but are likely to happen given enough time. A survey,
taxonomy, and presentation of language features for exceptions is given
in [Goodenough]. Ad2's approach is-defined in the [LRM], Chapter 11,
and discussed in the [Rationale], Chapter 12.

The Concept of Exceptions

[Goodenough] observes that, in general, an exception's full
significance is known only outside the detecting operation; the
operation cannot determine unilaterally what is to be done after an
exception is raised.

In essence, exceptions permit the user of an operation to
extend an operation's domain (the set of inputs for which
effects are defined) or its range (the effects obtained when
certain inputs are processed). Exceptions permit a user to
tailor an operation's results or effects to his particular
purpose in using the operation. In short, exceptions serve to
generalize operations, making them usable in a wider variety
of contexts than would otherwise be the case. Specifically,
exceptions are used:

(a) to permit dealing with an operation's impending *or
actual failure. Two types of failure are of interest:
range failure, and domain failure;

(b) to indicate the significance of a valid result or the
circumstances under which it was obtained.

(c) to permit an invoker to monitor an operation, e.g. to

measure computational progress or to provide
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additional information and guidance should certain

conditions arise.

(Goodenough] goes on to classify exceptions into three categories:

(a) ESCAPE exceptions, which require termination of the operation
raising the exception;

(b) NOTIFY exceptions, which forbid termination of the operation
raising the exception and require iti resumption after the
handler has completed its actions; and

(c) SIGNAL exceptions, which permit the operation raising the
exception to be either terminated or resumed at the handler's
discretion.

[Steelman] specifically requires that the occurrence of an
exception cause a transfer to an appropriate handler without completion
of the operation in which the exception occurred. Thus Ada exceptions
are of the ESCAPE category only, and not of the NOTIFY or SIGNAL
categories; they serve only for error situations and as terminating
conditions. It is worth mentioning that the NOTIFY and SIGNAL
capabilities for monitoring an operation can be realized in a
straightforward manner utilizing rendezvous. The general topic of
tasking in Ada is discussed by [Schuman].

The indication of the significance of a result can be implemented
using Ada exceptions. Such result classification information is usually
passed directly from callee to caller. As a result, a more natural
implementation utilizes status variables as added parameters of call.
An example is given in a later section.

Error Exceptions

Errors can be subdivided into domain errors and range errors. A
domain error occurs when the inputs to an operation fail to pass some
input assertion as to their acceptability. An example of such an input
assertion is the requirement that, in an operation to add together two
matrices, both matrices must be of the same size. A typical response to
a domain error is an attempt to "correct" the inputs and try the
operation again. Typically a domain error is detected before the
operation performs any actions which need to be undone.

A range error occurs when an operation determines that its output
assertion for determining the validity of its result may not be
satisfied. This may occur in two ways, either definite failure of the
output assertion, or evidence that it can never be satisfied.
[Goodenough] gives examples of these errors:

-4---
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definite failure
end of file on read
divergence in a numerical algorithm

evidence of failure
parity error on read
lack of convergence after a fixed amount of effort.

An operation in which a range error occurs will, in general, have
proceeded to the point where some side effects of the operation will
need to be undone.

Both errors require the ability to terminate an operation
prematurely, perhaps allowing the operation the right to "clean up"
after itself. In the next section we shall review Ada's language
features for exception handling. Following that we shall discuss an
approach to the systematic use of exceptions, and present several
examples.

-5-
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ADA EXCEPTION HANDLING

The name of an exception is declared by means of an exception
declaration. An exception occurs as a result of being explicitly raised
by a raise statement or, more typically, as a result of being propagated
by subprograms, blocks, or language defined operations. Exceptions are
handled by user-written exception handlers placed at the end of a block
or subprogram, package or task body. When an exception is raised, the
execution of a handler replaces the execution of the unit in which the
exception occurred. The choice of a particular handler for an exception
is dynamic and can, in general, only be determined at run time.

Basic Features

A simple example showing the use of some of Ada's exception
facilities is given below:

MYERROR: exception;

begin

if SOME CONDITION then
raise MYERROR;

endif;

if SOME OTHER CONDITION then
raise MYERROR;

endif;

exception
when MY ERROR =>

DO SOMETHING;
raise YOUR ERROR;

when others =5
DO SOMETHINGELSE;
raise;

end;

The above example illustrates the declaring, raising, re-raising,
and handling of an exception within a single piece of code, and the use
of others to indicate the handling of any exception save the ones
expliTitly listed in the handler. The example does not illustrate:

built-in exceptions,
suppression of exceptions, or
propagation of exceptions.

WE shall discuss these briefly now.

-6-
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Built-in Exceotions

Ada predefines exceptions in two places, the package STANDARD and
the packages INPUT OUTPUT and TEXT 10. Figure 1 summarizes briefly the
exceptions from package STANDARD. These exceptions in general correspond
to errors for which a simple fix is not possible. We shall see later
however that there are cases for which a fix-up and re-try is possible.
We are here not concerned with the use of the exception attribute
FAILURE; its use is discussed in [Schuman].

Figure 2 summarizes the input/output exceptions. As with the
STANDARD exceptions, these should be considered as errors, and not used
in routine programming. For example, in order to copy one text file to
another, one should, for a termination test, use the function
END OF FILE and not the exception END ERROR, as shown in Figure 3. We
have ignored in this example the-possibility that, as a result of a
mistake or system failure, a USE ERROR, STATUS ERROR, or DEVICE ERROR
might occur; we shall discuss this more fully later.

CONSTRAINTERROR Raised upon violation of range, index,
or discriminant constraints; attempted
reference to a non-existent record component;
attempted reference through an access
value of null.

NUMERICERROR Raised, for some machines, upon numeric
overflow or underflow.

SELECTERROR Raised when no alternative of a select
statement is open.

STORAGE-ERROR Raised when insufficient storage space

remains for a task or new allocation.

TASKINGERROR Raised when exceptions occur during rendezvous.

'FAILURE A task attribute which is an exception.
Raising T'FAILURE causes an exception in task T.

Figure 1: Exceptions predefined in the language in package STANDARD
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NAMEERROR Incorrect use of external file name
File already exists on call to CREATE
No such file exists on call to OPEN or DELETE

USEERROR Operation incompatible with external file properties
Attempt to lengthen a file via TRUNCATE
Attempt to WRITE to a protected file

STATUSERROR File not in proper status for an operation
File already open oncall to CREATE or OPEN
File not open on call to CLOSE or READ
No external file associated with internal

file on call to NAME
No default file on call to CURRENTINPUT

DATA-ERROR Value not defined on input
Value not defined on call to READ
Identifier not TRUE or FALSE on GET of BOOLEAN
Identifier not one of the enumeration literals

on GET of an enumeration type
(N.b. On a GET of a numeric type, if the value

is out of range, CONSTRAINTERROR is raised)

DEVICEERROR Malfunction of underlying system

ENDERROR Current read position is higher than end position
Attempt to READ or GET past end of file

LAYOUTERROR Incorrect text formatting
Attempt to SETCOL greater than line length
Attempt to PUT a string larger than the line

Figure 2: Exceptions defined in packages INPUT-OUTPUT and TEXT_10.

Suppression of Exceptions

By use of the pragma SUPPRESS, the check for some of the
conditions under which certain predefined exceptions are raised may be
suppressed. A summary of these check conditions is presen~ted in Figure

Use of the pragma SUPPRESS is a recommendation to the compiler to
avoid compiling run time checks. The programmer has assumed the burden
of guaranteeing exception-freeness of the code since, should an
exception occur whose run time check is suppressed, the results of the
program will be unpredictable.
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-- the wrong way to do it
procedure COPY(F:IN FILE; G:OUT FILE) is

C: CHARACTER;
begin

loop
GET(F,C);
PUT(G,C);

end loop;
exception

when END ERROR => return;
end COPY;

As opposed to:

-- the right way to do it
procedure COPY(F:INFILE; G:OUTFILE) is

C: CHARACTER;
begin

while not END OF FILE(F) loop
GET(F, C);
PUT(G,C);

end loop;
return;

end COPY;

Figure 3: END OF FILE in lieu of END ERROR

SUPPRESSible Check Programmer Guarantees

CONSTRAINTERROR exception

ACCESS CHECK access value not null
DISCRIFINANT CHECK variant record component exists
INDEX CHECK index constraint satisfied
LENGTH CHECK proper number of components
RANGECHECK range constraint satisfied

NUMERICERROR exception

DIVISION CHECK divisor not zero
OVERFLOWCHECK numeric operation does not overflow

STORAGEERROR exception

STORAGECHECK sufficient space is available

Figure 4: Checks which may be suppressed
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Propagation of Exceptions

An exception may be raised in a program unit in two ways. It may
be explicitly raised by a raise statement, or it may be propagated by
program -,nits, including operators, executed by the given program unit.
For example, NUMERICERROR will be raised both by the statement

raise NUMERICERROR;

and by the expression

... 3/0 ...

Within a handler for the exception NUMERICERROR, the exception may be
reraised, and passed to a higher level program by the statement

raise NUMERICERROR;

or the shorter

raise;

This second form is most convenient when processing anonymous except4.ons
in a handler for others.

Once an exception is raised, an appropriate handler for it is
found according to the rules given in Chapter 11 of the LRM. Roughly
speaking, the rules are as follows:

1'. An exception raised in a declarative part during elaboration is
propagated to the unit which caused the elaboration.

2. An exception raised in a sequence of statements is handled by a
local handler if present in the innermost block or body
enclosing the statement which raised the excepti n.

3. An exception for which there is no local handler, or which
itself occurls within a handler , is propagated to the unit which
caused execution of the current unit, except from a task to its
invoker.

Figure 5 provides two examples which illustrate the difference between
exceptions raised in a declarative part and exceptions raised in an
executable part. In short, exceptions raised in a declarative part
cannot be handled locally and must be handled by the invoker. Thus, in
g-eneral, one must be careful in order to fully encapsulate abstract data
types.
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declare

MYERROR: exception;

begin

declare
N: INTEGER := F0;

begin

exception
when MYERRCR => .. -- handler El

end;

exception
-when MYERRCR => ... -- handler E2

end ;
-- if F raises MYERROR, it is handied by E2

declare
MY ERROR: exception;

begin

declare
N: INTEGER;

begin
N := F0 ;

exception
when MYERROR => .. -- handler El

end;

exception
when MYERROR => ..-- handler E2

end;
-- if F raises MYERROR, it is handled by El

Figure 5: Exceptions in declarative and executable parts

• -11-

* . .- . . . . - -. . . . . I ,- t nI . -... . [. -~.... .. . .-



TipJ

USES OF EXCEPTIONS

This section presents a number of examples of the stylized use of
exceptions, derived from [Rationale].

Multi-level Return

A typical problem involves a main , -ogram which controls the
repetitive ope-ation of some procedure. fhis procedure, in turn, can
depend on subordinate procedures, any one of which might develop an
error condition from which recovery s not possible. At the top level,
however, recovery is possible by the expedient of abandoning the current
data case and moving on to the next. In other words, whenever an
exception occurs, execution should be abandoned and control transferred
to a particular point. This is sometimes referred to as an "up-stack
goto".

In the following example, procedure P treats 20 matrices.
Treatment of a matrix involves reading it in, inverting it, and printing
it out. The second level procedure INVERT may have a NUMERIC ERROR
exception, which it transforms to the exception SINGULAR. This is
interpreted by procedure P as "abandon this case and go on to the next".

procedure P is
SINGULAR: exception;
procedure TREAT A MATRIX is

procedure INVERT(M: out MATRIX) is
begin

-- may raise NUMERICERROR
exception

when NUMERIC ERROR =>
raise SINGULAR;

end INVERT;
begin -- TREATAMATRIX

READ(M)
INVERT(M);
PRINT(M);

end TREAT_ AMATRIX;
begin -- P

for I in l..20 loop
PRINT("ITERATION ",I);
begin

TREAT A MATRIX;
exception

when SINGULAR =>
PRINT(" singular -- on to the next case");

end;

end loop;
end P;
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Clean Up

In a sequence of procedure calls, the occurrence of an exception
causes termination of procedures in the dynamic call chain up to the
first procedure handling the exception. Procedures along the way,
although not fully processing the exception, may wish to express "last
wishes" in order to perform clean-up actions. The handler for others,
and the raise statement used to reraise the same exception in the
calling environment, can be used to obtain this effect.

Consider, for example, a procedure which performs some file
operation:

procedure FILE OPERATION(FILENAME:STRING) is
F: INOUTFIEE;

begin
-- initial actions
OPEN(F,FILE NAME);
-- perform work on the file
CLOSE(F);
-- final actions

end;

If an exception of any type should occur while the file is open, the
procedure FILEOPERATION will terminate, without closing the file.

This problem can be eliminated by rewriting the procedure,
enclosing the work to be done, which might cause an exception, within a
block. The block handles any exception by closing the file and reraising
the exception.

procedure FILE OPERATION(FILENAME:STRING) is
F: INOUTFILE;

begin
-- initial actions
OPEN(F,FILENAME);
begin

-- perform work on the file
exception

when others =>
CLOSE(F);
raise;

end;
CLOSE(F);
-- final actions

end;

-13-
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Retry of an Operation

As pointed out earlier, certain types of range errors are,
potentially, intermittent. For example, an attempt to read a tape block
may result in a momentary error. On rereading, the operation may be a
success. Given a low level READ TAPE operation which potentially raises
a TAPE ERROR exception, we cin write a loop which will retry the
operation up to 10 times. If still unsuccessful, a higher level
exception MALFUNCTION is raised. Note the use of a block to, in essence,
scope exception handling to a single statement.

for I in 1..10 loop
begin

READTAPE(BLOCK);
exit;

exception
when TAPE ERROR =>

if I 10 then
raise MALFUNCTION;

else
BACKSPACE;

end if;
end;

end loop;

Domain Extension

Exceptions which indicate domain errors can be used to, in effect,
extend the domain of a preexisting operation. For example, "/" on a user
defined floating point type REAL will not be defined for a denominator
of zero. By means of overloading, the definition of "/" for REAL
arguments can be extended:

function "/"(X,Y: REAL) return REAL is
begin

return STANDARD."/"(X,Y);
exception

when NUMERIC ERROR =>
return REAL'LARGE;

end;
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EXCEP TIONS AND ABSTRA CTION S

Issues

A number of problems arise when one attempts to systematically use
exceptions with packages in the implementation of abstractions. Ada
exceptions allow considerable freedom, and may be used in ways which do
not enhance the reliability of the code being produced. Three facts in
particular about exceptions must be dealt with in order to structure
their use:

1. Although exceptions are meant for error and other seldom
occurring conditions, they can be utilized as a "normal" control
structure. For example, one can program a block exit by means of
exceptions:

declare
BLOCKEXIT: exception;

begin

if SOMECONDITION then raise BLOCKEXIT; end if;

exception
when BLOCKEXIT => null;

end;

2. An exception, if it can occur, is clearly one of the potential
external effects of a procedure or a package. There is no
language-mandated requirement that it be documented as such.
Clearly good programming style requires that any procedure or
package which implements an abstraction must have all of its
possible external effects documented. In the next section we
shall provide guidance for such documentation which, if
followed, will alleviate this and other problems.

3An exception may be propagated beyond the scope of its name, and
there it can be handled only by means of others. Indeed, an
exception may be propagated beyond the scope of its name, and
then back within its scope again. This is a consequence of the
fact that the search for a handler follows the dynamic call
chain and is illustrated by the following example from
[Rationale]:



package D is
procedure A;
procedure B;

end;

procedure OUTSIDE is
begin

• •• D.A; ...
end;

package body D is
ERROR: exception;
procedure A is
begin

... raise ERROR;
end;
procedure B is
begin

. OUTSIDE; ...
exception

when ERROR :>
-- ERROR may be propagated by OUTSIDE calling A

end;
end D;

The Approach

The approach we recommend is fairly simple, and consists of three
parts:

1. Code in such a manner that an exception never escapes an
encapsulation without handling and recasting into a form
appropriate for the abstraction. Thus an encapsulation boundary
serves as a firewall for runaway exceptions and automatic
propogation.

2. To assist with 1, code in a style which always specifically
names user exceptions, rather than depending on others. As a
firewall, at least all enapsulation boundaries will have
handlers for others. One style is to have a single,
program wide exception GLOBAL ERROR, which can be handled
explicitly when appropriate. The encapsulation firewall will
consist of

exception

when others => raise GLOBAL ERROR;
end;

-16-
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3. Carefully document the use of all exceptions. Our recommendation

for this is presented in the next section.

Exception Documentation

[Luckham] has observed that if selected assertions and exception
propagation declarations are added to Ada, Ada exceptions can be
specified well enough to allow the verifiation of Ada programs with
exceptions. We propose to utilize a variation on [Luckham]'s ideas in a
form of structured commentary to assist a reader in unjerstanding a
program's use of exceptions.

Commentary on exceptions is potentially needed at four points in a
program:

1. declaration of an exception,
2. raising of an exception,
3. handling of an exception, and
4. propagation of an exception.

[Luckham] observes that no formal commentary is needed at the
declaration or explicit raising of an exception. We feel, however, that
if the exception name, or assertion at the point of raising, is not
sufficiently descriptive, additional documentation is desirable. A
reasonable layout is:

E: exception; -- why does this exception exist?

begin

raise E; -- why is E raised?

Associated with each handler must be an assertion which will be
true when that handler is executed. A reasonable layout is

begin

exception

when E => -- why are we here?

end;

Associated with the specification of each procedure which can
propagate an exception must be a set of statements naming each exception
which might be propagated, and under what circumstances. A reasonable
layout is

-17-
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procedure P(...); ._ propagates E sometimes
_. propagates El other times

.. propagates others occassionally

This form of commentary, in 
conjunction with the coding style

suggested, will make exceptions 
in a program easier to understand.
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EXAMPLES:

Result Classification

[Course] presents two examples of implementation of result
classification reporting. Package RECORD HANDLER defines an interface to
a simple file system; the procedure GET VALID RECORD calls
GET NEXT RECORD in the package body which in turn calls GET within
TEXT IO.-If an attempt is made by GET to read past end of file, the
exception END ERROR is raised. Figure 6 shows an implementation in
which GET VALID RECORD transforms the END ERROR exception, which is
meaningfuT only to a user of TEXT_10, into the NO MORERECORDS
exception, which is meaningful to the user of RECORDHANDLER.

Figure 7 shows the implementation of RECORD HANDLER in which
result classification is done by using a status parimeter, rather than
by raising an exception. GET VALID RECORD has a second parameter,
END OF DATA. It must still handle thi ENDERROR exception which it does
by appFopriately setting ENDOFDATA.

Observe that the END ERROR exception allows interaction between
the different levels of abstraction, GET and GET VALID RECORD, while
bypassing the intervening GET NEXT RECORD level. In alternative
implementation would have GET NEXT RETORD test the value of the
END OF FILE function and, wheF TRUE, pass this status result back to
GETVAEIDRECORD, avoiding the use of exceptions entirely.

package RECORD HANDLER is
type ITEM RECORD is ...
procedure OPEN FILES;
.)rocedure CLOSE FILES;
procedure GET VTLID RECORD (REC: out ITEM RECORD);

-- propagates NO-MORE RECORDS when fili is empty
procedure WRITERECORD(REC: in ITEMRECORD);
NOMORERECORDS: exception;

-- is raised by GET VALID RECORD
-- when the end of the input file is encountered.

end RECORDHANDLER;

Figure 6 (First Part)
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with TEXT 10;
package body RECORD HANDLER is
use TEXTIO;

procedure GET VALID RECORD (REC: out ITEM RECORD) is
S: RECORD TRINGT
LENGTHERRfOR: BOOLEAN;

begin
loop

GET NEXT RECORD (S, LENGTH ERROR);

if LENGTH ERROR or else not VALID RECORD(S) then
WRITE ERRORMESSAGE(S);

else
REC := CONVERT (S);
exit;

end if;
end loop;
-- exit from loop occurs only when good record found
-- or when an END ERROR exception occurs in
-- GET NEXTRECORD

exception
when END ERROR => -- GET in GETNEXT RECORD failed

raise NO MORE RECORDS;
end GET VALID RECORD;
end RECIRDHANDLER;

with RECORD HANDLER;
procedure PROCESS RECORDS is

use RECORD HANDLER;
ITEM: ITEM-RECORD; -- defined in RECCRD-HANDLER

begin
OPEN FILES;
loop-

GET VALID RECORD(ITEM);
WRITERECORD (ITEM);

end loop;
exception

when NO MORE RECORDS => -- GET VALID RECORD couldn't
CLOSE FILYS; - -

end PROCESS-RECORDS;

Figure 6 (Continued)
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package RECORD HANDLER is
type ITEM RECORD is ...
procedure OPEN FILES;
procedure CLOSY FILES;
procedure GETVTLIDRECORD (REC: out ITEM RECORD;

END OF DATA: out BOOLEAN);
procedure WRITE RECORD(REC: in TTER-RECORD);

end RECORD HANDLER;

with TEXT 10;
package body RECORDHANDLER is
use TEXT-IO;

procedure GETVALIDRECORD (REC: out ITEM RECORD;
ENDOFDATA: out BOOLEAN) is

S: RECORD STRING;

LENGTHERROR: BOOLEAN;
begin

loop
GET NEXT RECORD (S, LENGTH ERROR);
if rENGTR ERROR or else nof VALID RECORD(S) then

WRITEERRORMESSAGE(S);
else

REC := CONVERT (S);
exit;

end if;
end loop;
-- exit from loop only occurs when good record found
-- or when an END ERROR exception occurs in
-- GET NEXT RECOR1
END OF DATA := FALSE;

exception
when END FRROR => -- GET in GETNEXTRECORD failed

END OF DATA := TRUE;
end GET VALID RECORD;
end RECCRDHANDLER;

Figure 7 (First Part)
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with RECORD HANDLER;
procedure PROCESS RECORDS is

use RECORD HANDLER;
ITEM: ITEM-RECORD; -- defined in RECORDHANDLER
NO MORE RECORDS: BOOLEAN;

begin
OPEN FILES;
loop-

GET VALID RECORD(ITEMNO MORERECORDS);
exiT when-NO MORE RECORDS;
WRITE RECORDTITEMT;

end loop
CLOSE FILES;

end PROCESS RECORDS;

Figure 7 (continued)

-22
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Queues

In £Habermann] an example is given of the use of generic packages
in the generation of isolated abstract objects that are not used in
conjunction with one another. The specific example chosen is a queue of
complex numbers. This example should, in fact, be extended to include
appropriate exceptions for queue overflow and queue underflow, as
follows

generic
QSIZE: INTEGER range 1..64;
type T is private;

package QUE is
OVERFLOW: exception; attempt to ENO a full queue
UNDERFLW: exception; -- attempt to DEQ an empty queue
procedure ENQ (ITEM: in T);.-- popagates OVERFLOW

when Queue is full
function DEQ return T; -- propagates UNDERFLOW

-- when Queue is empty
end QUE

package body QUE is
FRONT,SIZE: INTEGER range 0 .. QSIZE 0;
QBODY: array (1. .QSIZE) of T;

procedure ENQ is ... end ENQ;
function DEQ is ... end DEQ;

end QUE;

If a user wants to create a queue of a particular size for a
particular type of elements (for complex numbers for instance), he
writes in his program the declaration:

package PlexQue is new QUE(QSIZE => 36, T => Complex.pair);

There may be many similar decla-ations in a program that each introduce
a new queue. Operations on the example queue are denoted by
"PlexQue.ENQ(u)" and "PlexQue.DEQ", where "u" is a variable or
expression of type Complex. A similar example is found in [LRMJ 12.4.
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Matrices

Package MATRIXOPS provides a collection of matrix manipulation
facilities, including an example of the recommended documentation for
exceptions.

package MATRIXOPS is

type MATRIX is array (INTEGER range <>, INTEGER <> ) of FLOAT;
SIZE ERROR: exception; -- two matrices are not compatible

function "1+"1 (M1, Ml: MATRIX) return MATRIX;
-- may raise exception SIZEERROR if M1 and M2
-- are not the same size

function "*" (M1, M2: MATRIX) return MATRIX;
-- may raise exception SIZE ERROR if the number
-- of columns of M1 is not equal to the number
-- of rows of M2

end MATRIXOPS;

A use of the MATRIXOPS package might be

declare
use MATRIX OPS;
A,B: MATRIX (1. 0, 1..20);

begin

C A*B; -- may cause SIZEERROR

end;

This block does not have a local handler. Should SIZE ERROR be raised,
it will be propagated to the enclosing unit.
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package body MATRIXOPS is

function "1+1 (M1, M2: MATRIX) return MATRIX is
-- may raise exception SIZE ERROR
TEMP: MATRIX(M11FIRST..M1'LTST, Ml'FIRST(2)..Ml'LAST(2));
ICFFSET, JOFFSET: INTEGER;

begin
if Ml'LENGTH(l) 1=M21LENGTH(l) or

Ml'LENGTH(2) /~M2'LENCTH(2) then
raise SIZE ERROR;

end if;

TOFESET M2'FIRST(1) - M11FIRST(1);
JOFFSET M21FIRST(2) - M1'FIRST(2);

for I in M1'FIRST(1) .. M11LAST(1) loop
for J in M1'FIRST(2) .. Ml'L.AST(2) loop

TEMP(I,J) := M(I,J) + M2(I + IOFFSET, J + JOFFSET);
end loop;
return TEMP;

end ""

function 11*1 (M1, M2: MATRIX) return MATRIX is

-- may raise exception SIZEERROR
TEMP: IAATRIX(Ml'FIRST(l)..Ml'LAST(l),M2'FIRST(2)..M2'LAST(2));
OFFSET: constant INTEGER := M21FIRST(1) - M11FIRST(2);

begin
if M1'LENGTH(2) /= M2'LENGTHMl then

raise SIZEERROR;
end if;
for I in M1'FIRST(7)..M1'LAST(1) loop

for J in M2'FIRST(2)..M2'LAST(2) loop
TEMP(I,J) := 0.0;
for K in Ml'FIRST(2)..Ml'LAST(2) loop

TEMP(1,J) ::TEMP(I,J) + Ml(I,K) *M2(K +OFFSET, J);
end loop;

end loop;
end loop;
return TEMP;

end It * I;

end MATRIX OPS;
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T.

File Copy

The discussion of exceptions provided with the input/output
packages presented a file copy example. A reasonable approach to this
problem is the inclusion of CCPY within a package of 10 UTILITIES, as
follows:

package IC UTILITIES is

ICUTILITYERROR: exception; -- raised for any exception in any
-- procedure in this package

procedure COPY(F: IN FILE; G:OUT FILE); -- may raise 10 UTILITY ERROR

end IOUTILITIES;

package body IOUTILITIES is

procedure COPY(F:IN FILE; G:OUT FILE) is
-- may raise IOUTILITYERROR
C:CHARACTER;

begin
while not ENDOFFILE(F) loop

GET(F,C);
PUT(G,C);

end loop;
return;

exception
when others =>

raise IO UTILITYERROR;
end COPY;

end 10 UTILITIES;
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1. Low Level Language Features
This section describes Ada's low level language features and provides examples to illustrate how

they might be used. In Section 1.1, we discuss the probiems of machine and compiler implementation
dependencies, indicating when portability is possible and when it is not. Section 1.2 contains an

example of memory oriented hardware interfaces, without interrupts. Section 1.3 extends this

example by introducing interrupts and how they are handled in Ada. The low level I/0 features are
introduced in Section 1.4 and the example is rewritten to use these features of Ada.

1.1. Machine and Implementation Dependencies
In the construction of systems there are particular points where softvware must be written to

interface with hardware, e.g.. in managing the use of the processor or peripheral devices.
Historically, assembly language has been used at these points instead of higher level languages.

These programs written in assembly language are provided in one of two ways. either as part of the

operating system that is used by the language or as part of the run-time support system for the
language.

In Ada, some of these points of interface (such as processor management) will be supplied by the
run-time support. The remaining points of interface are left to the system builder to design and
implement. Ada provides several ways of programming this interface. The system builder may use

the actual hardware interface or a slightly higher level of abstraction provided by the language or a
mixture of both. The choice is more or less determined by the machine with which to interface.

We discuss two major aspects of this interface that must be programmed: device interfaces and
instruction interfaces. We show where these interfaces are supported by the language and where

they require a higher level of abstraction.

Where the hardware interface takes the form of dedicated memory locations or densely packed
data records, Ada provides language features to explicitly describe the interface. Here the designer
uses that hardware interface directly and describes dependencies by specifying memory addresses
arnd record representations.

Actual instructions to devices may take either the form of memory references, as in the PDP-1 11 for
example, or, more typically the form of privileged instructions executed by the processor. In the case

of memory references, the Ada assignment statement provides the means of device instruction.
However, in the case of privileged instructions a slightly higher level of abstraction is required so that

* the designer does not h'ave to use the privileged instructions directly.

To this end, Ada provides a low-level 1/0 abstraction embodied in th~s LOW...LEVEL_1O package.



Two procedures, SENDCONTROL and RECEIVECONTROL, replace the use of privileged

instructions which constitute the actual hardware interface. The data interface is also included in this

package as part of the encapsulation of the low-level interface. However, the system builder need not

be concerned with the data representation since it is hidden within the abstraction.

While the language features that deal directly with the hardware interface are part of the language

specification and, as such, are compiler independent, the LOWLEVELIO package is not part of the

language specification and is dependent upon the particular implementation. The Ada manual

provides a template which suggests the interface in very broad terms (i.e., that there are two

procedures and various data structures), but there is no standard for mapping the actual machine

interface onto these procedures and data structures. Thus, the low-level I/O interface is susceptible

to extreme dependence upon particular compiler implementations.

The system designer is therfore confronted with two types of dependencies: machine interface

dependencies and compiler implementation dependencies. These dependencies affect the

implementors efforts to make the software portable to other systems.

In the case of machine dependencies, we are confronted with two levels of dependencies: the

device interface and the processor interface. The device interface is the set of interfaces such as

data and commands that interact directly with the device. The processor interface is the set of

facilities that may be required to actually control devices. In other words, the system designer may

have to use the processor interface because he cannot directly interact with the device.

Typically, each manufacturer supplies a device interface for any given device that is sufficiently

different from that of other manufacturers. It is not possible, therefore to write a generalized low-level

device handler. Thus. the designer is forced to rewrite the device handler for each manufacturers

device.

Even if device interfaces were identical across several manufacturers. processor interfaces afre

different for each manufacturer (and may even be different for machines from the same

manufacturer) Thus. certain aspects of the low-level software may be portable while certain other

aspects may not be. For example, the use of the processor interface may not be portable. Where the

processor interface is directly available to the user and is covered by the language features of Ada,

such as address specifications, data representation specifications, memory references and

assignment. the software will not be portable.

The compiler implementation dependent low-level I/O package has the potential to help resolve the

processor i'terface problems. Since the low-level I/O package provides a higher level of abstraction

than the bare machine, the package could abstract the similarities and hide the differences in the
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processor interfaces. If this abstraction occurs, then portability becomes feasible. However, the way

the package is implemented could complicate matters rather than simplifying them. Instead of hiding

the differences between various device and processor interfaces, the low-level I/0 package would

compound the differences if the package interface specification were different for each compiler.

This would reduce the pozibility of writing portable software. even where the software should be

portable, as for example on identical machines with identical devices but different compilers.

Thus, while Ada provides a means of making the hardware interfaces visible, it does not provide a

sufficient level of abstraction to hide the differences of these interfaces over a large class of machines

and devices. Portable low-level software, as a result, will be extremely difficult to write.

1.2. Memory Oriented Interfaces

Data interfaces provided by hardware are typically packed as densely as possible within the

processor's unit of memory reference. To map the representation of the high level description of all

data interface onto the actual hardware layout, Ada provides record representation specification

facilities. To illustrate this we present a simplified card reader handler. The interface described here
is similar to that found in a PDP-11: a memory oriented interface. For reasons of simplicity, we will

use the status mechanism rather than the interrupt mechanism.

The handler illustrated here will be presented independently of such considerations as gaining

permission to use the card reader or viewing the card reader as a virtual resource (see the section on

tasking).

Again, for purposes of simplification, assume the existence of a generic package.

CIRCULAR_BUFFER_M©ODULE, that provides an abstract data type, Circular Buffer. with the

operations Get and Put. Assuming that the buffer will only be used by a single procucer (the card
reader handler). and a single consumer (whoever is using the card reader), ve need not concern

ourselves with synchronization or exclusion problems while we concentrate on the low level aspects

at hand.

generic type data is private:
package CIRCULAR BUFFER MODULE is

typeCircular_6ulfer (i:natural) is private;
procedure Get (cb Circular Buffer: d : out data);
procedure Put (cb Circular-Buffer; d ;data);

private
type CircularSuffer ( i: natural ) is ...

end CIRCULARGUFFER MODULE;

Essential to the card reader handler are (1) the Card Reader Status Register, a register that

-7
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contains the current status of the device and provides the possible commands to the devices; and (2)

the Card Reader Buffer Register, a register to specify the address of the buffer for input from the card

reader. These are hard wired registers located in what is often called "direct access memory". The

registers are first described as types, objects are declared for the types and the representations and

locations are specified.

The handler itself is a task that loops forever. Inside the loop, it waits for the reader to become "on-

line", the command is issued to read a card. and the handler waits for the card to be read. After

completion of the read, either errors encountered are processed or the card is "put" onto the circular

buffer. The package interface and the outline of the package body are introduced first.

package CARDREADER is
type CARDBuffer is new string(1 . 80);
procedure GetCard (b : out CARDbuffer);

end CARD-READER;

package body CARDREADER mis
CARDCBModule is new

CIRCULARBUFFERMODULE(CARDBuffer);
-instantiate a circular buffer for cards

use CARDCBBuffer;
CB: CircularBuffer (50);

- a circular buffer of 50 cards
task CRHandler;
procedure GetCard ... end:
task body CRHandler ... end;

end CARDREADER;

The primary interface procedure is Get.Card which retrieves the oldest card from the circular buffer.

procedure GetCARD (b: out CARD-Buffer) is
begin

Get(CB, b);
end Get-CARD;

The task body for the Card Reader Handler contains the type definitions that are appropriate to the

device interface. Cblects are declared for those device dependant types. Because there is a

separation of the logical and physical specifications, the representation specifications occur as a

group after the logical defirtions. The representation of the data structures and the address

specifications of the appropriate device registers are given.

task body CRHandler
- type definitions

type CRCommand is (read, .. .

/2,g
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type CR-Error is (timing..error, motion..check, hopper..check);
type lntStatus is (disabled, enabled):
type CR -Status is record

error :boolean;
card..done :boolean;
problem CR -Error;
on-line boolean,
busy boolean;
ready boolean;
interrupt status : mt -Status;
command CR command;

end record;
type CRB,.pointer is access CARDBuffer:

- data object declarations
CRS : CR-Status,
CRB : CRBpointer : = new CARD buffer ((1.80) =>

- representation specifications for types

for CR_.Error use (timing error =)> 1. motion-check >) 2, hopper-check > 4);

for CR..Status use record
error at 0 range 0: -- assume msbit
card..done at 0 range 1;
problem at 0 range 2..4;
on-line at 0 range 5;
busy at 0 range 6;
ready at 0 range 7; -- 8 not used
interrupt status at 0 range 9: -- 10- 13 not used
command atO0 range 14..15;

end record:
for CR-Status'SIZE use 16:
for CARD-,Buffer use packing;

-address specifications for data objects
for CRS use at 8 0777160;
for CR8 use at 8 #777162#

begin -- body of task for handling the card reader
CRS.interruptstatus: = disabled:- status driven handler
loop

while not CRSonjline or CRS.busy
loop null: endloop;

CRS.comnmand: = read;
while CRS.card -done and CRS.busy

loop null; endloop;
if CRS error

then log error (CRS.problem):

edi;else put (CS, CRB.data);

end loop;
end CR Handler;,
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1.3. Interrupts

The status approach. accomplished by constantly polling the device until the desired state is

reached, may not be very useful because of the time spent in a "busy wait". An interrupt mechanism

enables the handler to respond to changes in device state without busy-waiting.

The task entry mechanism is used to provide the means of specifying interrupt connections and
interrupt enabling and disabling. By representing an entry at a particular location (probably an
interrupt vector locati n) the system designer connects the entry to the actual interrupt. When an

accept statement is performed on the entry, the interrupt is enabled until the rendezvous actually

takes place: otherwise the interrupt is disabled. This requires the runtime support to put a layer of

abstraction between the Handler and the interrupt mechanism.

We present here only the card read handler. The remainder of the package stands unchanged.

The interface, except for the use of interrupts, is identical.

Task CR Handler is
Entry CRInt:
for Cr-Int use at 8 # 100#;

end CRHandler;

task body CR Handler is
begin

loop
CRS.comrnand := read;
accept CRInt;
if CRS.error

then log(CRS.problem);
else put(CB, CRB.data);

end if:

endCRH,ader;

Notice that the interrupt handler does not interract with any other process except the hardware

process through the entry (as an interrupt call) mechanism. It does not perform a call on the entry of
any other process nor does it accept calls from other processes. Extreme care must be taken to
insure that the handler does not wait unknowingly on another process, especially if that wait degrades

the efficiency of the handler beyond acceptable levels. This wait could easily occur if the handler
calls the process that was suspended to allow the handler to service the interrupt.

,~30
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1.4. Low Level I/0 Package

Where the device dependant interface is provided by means of priviledged processor instructions,

the system builder must use the implementation dependant interface provided by the low level I/0

package. The allowed commands for each device will be specified in the parameters for the

SEND.CONTROL procedure. The device handler instructs the desired device through this procedure.

The status retreivable from the device is defined in the second parameter of the RECEIVE CONTROL

procedure. By calling this procedure, the current state of any device may be determined. The actual

code for the handler is similar to that found in the previous two sections, except that most of the

interface mechanism is exported by the low level I/O package.

We present her only the part of the package that is relevant to the card reader handler.

package LowLevelJO is
type Device_Class is ( .... cardreader ....
type CARD Buffer is new strinq(l .M):
type CRCommand is record

C (read, eject);
d :CARDBuffer;

end record:
type CRError is (timing.error. motioncheck, hoppercheck);
type CRStatus is record

error : boolean:
carddone boolean;
problem : CR Error;
on line : boolean;
busy boolean:
ready :boolean;

end record;

procedure SEND CCNTROL (d Device_Class: c: CRCommand):
procedure RECEIVE CCNTROL (d: Device_Class: s CR Status):

end Low-Level-tO;

The task interface remains the Same as above. The entry connects the handler to the interrupt. The

body of the task has calls to the low level I/O routines instead of the memory references that sufficed
in the previous examples.

Task CR Handler is
Entry CRhlr':

private
for CR Int use at 8 # 100#;

end CRHandler;

task body CRHandler is
use Low-Level9O;
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CRS: CR_Status;
CARD: CARDBuffer;

begin
loop

SEND-CONTROL (cardreader, (read, CARD));
accept CR_Int:
RECEIVE CONTROL (cardreader, CRS);
if CRS.error

then log(CRS.problem);
else put(CB, CARD);

end if;
end loop:

end CRHandler;

1.5. Summary

We have illustrated how a system builder might construct machine dependant software in various

kinds of machine architectures. Not all of the language features that are available to express machine

dpendancies have been used in these examples, but the ways in which they might be used are

anclagous to what has been shown.

Particular care must be taken if portability is a major issue. Two types of dependancies must be

reckoned with: hardware and compiler implementation dependancies. These issues cannot be

avoided, but the designer can. by suitable abstractions, confine these sections of non-portable code

and, thus, minimize their impact when porting software from one system to another.

In general. the features of Ada enables hardware dependancies to be made visible at the language

level and provides a means of logical treatment that attains all the benefits of readability and

maintainability that one expects from high level languages.

/3.,,-
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Tutorial material on the real data-types in Ada

3 A Wichmann, National Physical Laboratory

Note: These notes are Jesigne, as nate-_al to be
presented with a set of viewgraphs. .he complete
material can be presented in about four hours
assuming only a limited knowledge of Ada
beforehand. The viewgraphs are reproduced at the
end of these notes, and are referenced in the text
by numbers in the right hand margin. 0

I. Fixed and Floating point

The real data types in Ada are for approximate computation. The
majority of physical quantities are necessarily approximate
because of the inherent errors involved in their observation. Such
quantities are therefore naturally handled by means of the real
data types in Ada. The purpose of these notes is to explain the
facilities in Ada so that the programmer can use the language
reliably and in a manner appropriate to the job in hand.

The real data types in Ada are divided into two classes -- fixed
point and floating point. There can be any number of fixed point
and floating point data types in a program. It is convenient to

have an intuitive view as to what fixed point and floating point
means. Thinking in decimal, fixed point means-a fixed number of
places before the decimal point and a fixed number after:

+d.dd or +ddd.d or +ddd.

whereas floating point means that there are a fixed number of
significant digits and an exponent ("scientific notation" of
calculators):

+d.ddE+dd or +d.dE+d or .+d.dddE+dd

where the integer after the E gives the decimal exponent.

T7?e data type thus determines how values are stored since any one

type will have the same format. With a fixed point data type with
.he format

+d.dd

a half is storeo as +0.50 and one third as +0.33 which is, of
course, in error to a small extent. The fact that computed values
and even constants cannot be stored exactly is the reason why real



data types are said to be apzrcximate. Note that with this data
type values of magnitude lass than 0.005 will be represented as
zero (assuming rounding is performed).

Now consider an example of a floairng point dato type with the 0
format:

+d.ddE+d

Then

100.0 is stored as +1.00E+2

One might think it could also be stored as +0.1OE+3 but this is
not permitted because values are 'normalized'. The importance of
normalisation is easy to appreciate when considering storing the
value 101.0 with the same format. This is

+1.OIE+2

whereas putting an initial zero would lose the final 1 giving a
one per cent error. Note that floating point values have a roughly
constant relative error whereas fixed point quantities have a
constant maximum absolute error.

In Ada, data types are distinguished by their names, not just
their formats. Hence two data types having identical formats are
distinct. This means that data types should be given names to
reflect the logical properties rather than their formats. if two
sensors read temperature and distance, then they should oe given
distinct data types DEGREES and FEET rather that one type just
because the range of values and accuracy requires an identical
format.

Note that the fixed point data types in Ada have formats which are
not quite the same as those used by calculators. With a
calculator, dividing 1.23 by ten gives .123, but with the format
+d.dd, the division will yield +0.12. To do the division
accurately in Ada, then the result must be stored in a type with
the format +.ddd. Clearly, the reduced flexibility of the Ada
fixed point means that it is very easy to lose accuracy in
performing computations. Losses also arise with floating point,7
computations but they are less marked due to the automatic
normalization. For this reason, most prozrammers would prefer to
use floating point, which is of course, wny mocern scientific
computations use this mode. As a rough estimate, one should expect
3n algorithm to be three times more expensive to program in fixed
point. The reason for using fixed point is usually the absence of
floating point on a particular machine or because th± digitised
signal input is in fixed point.

The lescription given above uzing decimal formats is nerely to
illustrate the gereral nature of Ada dota types. In fact, ;da
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defines the data formats in binary since thi.s is almost universal
for modern computers. To give a more accurate description, we
first need some notation from the Ada language,

2. Notation for literals

we are only' concerned with numeric literals. These can either
be for integers or real values. Real values are distinguished by
the presence of a decimal point. if a real value is required by a
particular context in the language, then an integer is not
permitted. In other words, if the real valiie one is required 1.0
must be written and 1will not be sufficient. This means that it
is always easy to see if approximate computation is being
performed, even with parameters to a procedure because literal
values will have a decimal point.

Decimal integer values are written in the conventional manner.
Spaces may not appear within the digits of the value, but an
underscore can be used instead. This is very convenient with large -'

values since the thousands or millions, can be separated to aid the
eye.

Examples: 1 01_234_567

The following are not valid

1 _ 2. 1 234~

large integer values can conveniently use the exponent notation.
For instance, six million can be written as:

6_000_000 or 6E6 or 6_OOOE.3 etc.

An implementation may limit the size of literals which can be
handled, but such limits are likely to be quite large. The line
length also restricts the magnitude of literals.

Real literals can be written in the conventional decimal notation
with a decimal point. An exponent can optionally be Used. For
instance, the following all represents the same value:

3-14$ 0-314E+1 314.OE-2 03.1_LI0C0

The accuracy with which a literal value is stored in the program
is determined by the context and not by the way in which the
literal value is written in the program. Hence merely writing 20
decimal digits does not imply that the value will be stored with

* that accuracy. The accuracy will depend upor. the types usc in the
computations containing the literal.

Both integer and real 'ilterals car be written using bases other
than ten. -,ne reason for this facility is that some machine



proDperties are 3pccifiea b y t.t manf acturer .n octal or
hexadecimal and hence this notation is the logical one to use in
these contexts. kn additional reason for permitting other bases
for real literals will soon ue apparent. The bases which A;a
allows are those from 2 to 16. Base 16 uses a notation similar to
that of hexadecimal on the IBM computers ar.r' in consequence A
stands for 10, B for 11, C for 12, D for 13., E for 14 and F for
15. The base is determined by a decimal value before a sharp
character which brackets the based number sequence. Note that the
base and the exponent are written in decimal and in consequence
the A-F characters when used as a digit, can only appear between
the pair of sharp characters. For example:

2#101# means 4 + 1=5 with a base of 2

4'101# means 42 1 1 = 17

16#FF# means 15 * 16 + 15 = 255

The nctation can be used both with exponents and with a point for
real literals.

Hence 4 10!#E2 means 4#1IC10 = 44+ 4 256+16 -272

Writing and reading values in other bases requires care since we
tend to think in decimal. This is especially true with real
values.

The syntax of numeric literals is most easily portrayed by means
of syntax diagrams. The arrowed lines are followed according to
the syntax units being analysed. For instance, an integer with
interleaved understores permitted is given by the diagram

integer:

d igitT

The bcx for digit can also be given by a diagram with just ten
alternatives for each of the digits 0 to 9. Similarly, one has

Lasedinteger:

digit
A

C



Now the syntax diagram for numeric literals can be given using the
diagrams for integer and based integer

numeric literal:

"->baedtntger_ e,
-~t;;r~ nteger.' JlE ntegerJ

e-i .basedintegr

One further language facility needs to be given because of its
convenience in explaining the language later in this material.
This is number declarations. Both real and integer literal values
can be given an identifier in a number declaration. For instance

PI: constant := 3.14159 26535;
MAXLINELENGTH: constant : = 96;

Within the Ada program where these identifiers can be used, the
use of the identifier is equivalent to writing the literal value.
Such number declarations can be used to separate out key numerical
values.

Exercises

Write the following based number values in decimal:

16#FF# 4#1.01#E2 3#0.1# 8#0.1# 16#0.8#

What value is 16#0.99999# just a bit less than?

What is wrong with the following literals?

3._14 4#_0.1#2 16#FF#E-1 8#0.9#

3. A model of approximate computation

Ada defines the properties that the approximate computation of
real arithmetic must satisfy. Eecause the real arithmetic is

implemented on machines with very different underlying hardware,
the definition is permissive. :n other words, the properties must
be satisfied, but this can be achieved in a number of different
ways. A particular real data type definition specifies an accuracy
that must be met. An implementation is free to provide greater

*. accuracy than that specified. This is essential because a machine
can usually only conveniently implement a small range of different
a:curacies. "he problem is to define the properties so that

.. . . I I -



different implementations are possible and yet make the properties
good enough to meet the demands of the numerical analyst. The
methioc used is based upon. tne wcrk of W S Brown from Bell
Laboratories on floating point E211. There are differences between
Brown's work and the definition of Ada because of the different
objectives - Brown was interested in providing a model of actual
hardware whereas with Ada a machine independent language
definition is required. Ada also handles fixed point.

Ada assumes that the arithmetic facilities are provided using
binary. There are a few additional cbnplexities with fixed point,
so let us start by considering floating point. Floating point
computation involves storing values with a sign, a mantissa and a
signed exponent. The difficulty is that we do not wish to say how
long the mantissa will be, nor the actual range of the exponent
since this will depend upon the particular hardware in use. Hence
we say that the mantissa must be at least so long, and the
exponent range must be at least so long.

With a particular mantissa length and exponent range guaranteed,
certain values are capable of being stored exactly. As an example,
assume that the mantissa length is 4 hexadecimal places
(corresponding to 16 binary places) . Then

16#0.800004 0.5 is stored exactly
as is 16#0.FOO004 15.0/16 =0.9375
and 16#0.FFFF#4E' = FFFF.0# =65535.0

With such a data type, these values are handled exactly in the
sense that if one assigns a value to a variable, then one can test
for equality and obtain the expected result. These values are
called model numbers. Equality and inequality of model numbers
have the characteristics of the exact values. However, an
implementation will typically have values which are not model
numbers and almost all the difficulties of real arithmetic are due
to these values. Given one of these additional numbers it is
usually bounded by a model interval. For instance, with the above
data type

164 0.ABCD4# is bounded by
160 0.ABCD# and 16#0.ABCE#

and 0.1 which is 1600.1999999.. .# is therefore bounded by

16#0.1999# and 16#0.199A#

Literal values in an Ada program must be converted by the compiler
to values within these bounds inclusively. Hence these model
intervals perform a vital role in defining the errors that c an@ID
arise in a computation. This role is extended to operations as
follows. Given two operands A and B and an operation op, then we
want to bound A op B. Corresponding to A and B, there are model
intervals. The operation is then applied to the two intervals. The
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resulting set of values is tnen widened, if necessary, to a
further model interval. This model interval bounds the machine
computed value of A op B. This might seem complicated and

indirect, but it has a number of simple consequences. For

instance, the model interval for a model number is just the model "-

number. Hence if the operands are both mode- numbers and the

correct, mathematical result is also a model number, then the
machine result must be the exact, correct result.

Exactly the same logic of model numbers, model intervals and the
calculation of model intervals which bounds the result of an
operation applies to fixed point as well. The difference between
fixed point and floating point lies in the model numbers
themselves. There are some additional complexities which arise in
the case when a computed result lies outside the range of model
numbers.

Exercises

Given a floating F~int type which has model numbers with 4
hexadecimal places, what is

(a) the next model number above 1.0?
(b) the next model number below 1.0?
,c) the ratio of ((a) - 1.0)/(1.0 - (b))?

What rational numbers are not represented exactly in Ada with any
accuracy using floating point?

4. Floating ?oint Data types

Ada allows the programmer to specify the minimal accuracy of a

real data type. For floating point this specification is an
integer giving the number of decimal digits of significance in

d values. This method of specification is used because of its
* ng intuitive appeal in spite of the fact that the detailed

3ema-ntics of floating point uses binary.

The number of decimal digits determines the model numbers of the
type. Since a binary radix is used, the floating point model
numbers consist of

sign * binarymantissa * (2.0 ** exponent)

where the mantissa length and the exponent range mst be
determined from the number of decimal digits. There is an obvious
relationship between a binary mantissa and the corresponding
decimal one. For D decimal digits one needs more than
D*log(10)/log(?) binary places to give at least the same accuracy.
Hence Ada defines the mantissn length to be the next integer

greater than Dmlog(10)/log(2).

IL
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Unfortunately, there is no obvious natural value for the exponent
range. In fact, the exponent range i3 independent and logically
should be separately specified by the programmer. Such a detailed
specification would not be useful since actual hardware does not
permit an independent choice of both parameters. Also, to be
convenient to the ordinary user, default values are needed for the
range which would again be arbitrary. Some algoritns do require a
reasonable range in relation to the mantissa and from a study of
existing machines, the value has been set of -4*B .. 4*B where B
is the number of binary places in the mantissa.

Let us now consider an example of a minimal working accuracy of
five decimal digits. This requires at least 5 * 3.32 = 16.6 binary
places. Hence the length of the binary mantissa is taken as 17
places. The binary exponent range is -68 .. 68. Hence we have

smallest nodel number greater than zero 2#0.1#E-68
" 2 .0**(-6 9 ) about 1.69E-21

largest model number = 2#0.11111111111111111#E6-3

" 2.0**68 - 2.0*'51 about 2.95E20

The next model number greater than 1.0
= 2#0.10000000000000001E1
= 1.0 + 2.0 **(-16)

Such a floating point type is defined by the declaration

type F is digits 5;

Having declared such a type, it is clearly convenient to be able
to access the basic constants associated with it. By this means,
algorithms can be written where the accuracy is isolated to the
single type declaration. These constants are called attributes of
the type and, in this case, they are predefined by the language
definition.

The predefined attributes are written as the type i.dentifier (F) a
prime (') and then the name of the attribute. The attributes for a
floating point type which are related to the 77odel nuimbers are:

F'DIGITS: the value of the expressid-n after "digits'
in the type declaration, and hence 5 in this case,

F'MANTISSA: the binary length of the mantissa and
hence 17 in this case,

F'EMAX: the maximum value of tie exponent which is
68 in this case and i3 always a*F'MANTISSA

F'SMALL: the smallest positive mcdel number, which
is about 1.69E-21 in tnis case. :ts value is

- -------------- . .



always 2.0**(-F'EMAX-1).

F'LARGE: the largest model number, which is about
2.95E20 in this case. Its value is always
2.0**F'EMAXO(1.0-2.0**(-F'MANTISSA)),

F'EPSILON: the absolute value of the difference
between 1.0 and the next model number above 1.0.
The value in this case is about 1.52E-5 or in
general 2.0m*(-F'MANTISSA+1Y

Of course, because of the relationship between these values, there
is ittle logical need for them all. In practice, however, they
are needed for program clarity. F'MANTISSA and F'EMAX give the
basic properties of the model numbers whereas in actual
programming the values F'SMALL, F'LARGE and F'EPSILON are usually
needed.

Consider the problem of determining the errors in a computation. A
literal value such as 0.1 cannot be stored exactly since it has a Q
recurring binary representation. What is the error involved? In 0
handling binary values, it is convenient to use hexadecimal
otherwise the based numbers are rather long to write. We have

0.1 = 16#0.19999...#

With the type F we have 17 binary places and hence the value 0.1
is bounded by the model interval

16#0.19999#..16#0.1999A#

The difference is 16#0.00001# = 16#0.1#E-4 = 16.0'"(-5)
= F'EPSILON/16

The relative error is thus less than or equal to 9.54 E-6 in this
case.

In general, it is easy to see that the relative error depends upon
the relationship between the value and the powers of 2. For
instance, a value just greater than one has a relative error of
F'EPSILON (the definition of the value) whereas a value of just
less than 1.0 has half that relative error. In practice, the
actual values of constants are not so important, and in any case
cannot be used for variables and hence the general rule is

lowest possible machine value representing the true value
= (1.0-F'EPSILON)true value

highest possible machine value representing the true value
= (1.0+F'EPSILON)*true value

These are the relationships used for classical error analysis,
comoined of course, with corresponding relationships involving the
numerical operations. Note that constants may be converted by

, V.
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rounding implying half the maximum relative error. This paper does
not atm to teach classical error analysis. The formal proof of the
inequalities of classical error analysis from the Ada model number
definition is given in References [1,23.

Classical error analysis is satisfactory provided the values
computed are either zero or lie in the ranges F'SMALL .. F'LARGE
and -F'LARGE .. F'SMALL. Consider the computation of a value
smaller in magnitude than F'SMALL, or,even such a value written in
a program. Then the value in the machine will be in interval
-F'SMALL .. 0.0 or 0.0 ..F'SMALL according to the sign of the
value. This implies that all precision could be lost. For
instance, the actual machine may only handle model numbers and
round literal values. Hence values greater than 0.0 and less then
F'SMALL/2 will be converted to zero. A compiler could warn the
programmer of such a conversion of a non-zero value to zero, but
there would be little reason to do so since the same values
calculated dynamically would lead to zero without warning. Hence
the programmer needs to beware of this condition called underflow,
if an algorithm requires the ac :urate computation of small values.

As an example of underflow, consider the computation of the length
of the hypotenuse of a right angled triangle:

X := SQRT(A**2 + B**2);

It might seem reasonable that if A or B >= F'SMALL then X >=
F'SMALL. However, F'SMALL**2 may underflow to 0.0, giving X=0.0 if
both values are small. Hence if the specification of this
calculation requires that non-zero values of A or B gives a
non-zero value for X, then one must take this into account by
writing (for instance):

SM: constant F :: 2.0**(-F'EMAX/2); -EMAX is even
-- calculate A and B
if ABS(A) < SM and ABS(B) < SM then

A A/SM;
B :: B/SM;
X SQRT(A**2 + B**2) * SM;

elsif
-- other case

end if; - ('1)

Note that the use of powers of two for scaling reduces the
potential errors to a minimum.

Ada does not require that there are no machine values between 0.0
and F'SMALL. Cn a particular machine, such values could be present
making the cautious code above less necessary. The progrLmmer is

(*!) This example is merely an illustration, se secti3n 'C
for a realistic example.

,t
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strongly advised to take the precautions for underflow illustrated
above because thealgorithm will then be portable.

The problem of overflow, that is, when computed values or
constants are greater than F'LARGE, is more severe. Clearly, there
must be some limit to values that a machine can handle and beyond
that .-nit it is, in general, unreasonable to replace the true
value by a single value. Ada only requires that values upto
F'LARGE are handled correctly. A machine can, and often does,
provide further values. The implemented range for any Ada scalar
type is F'FIRST .. F'LAST. When the implemented range of values is
exceeded, most machines provide an indication of this fact. In
Ada, this is signalled by means of the NUMERIC EhROR exception,
for computed values. If a literal value exceeds the implemented
range, then the CONSTRAINTERROR exception is raised. With
underflow, the computation proceeds in spite of obtaining
potentially meaningless results, but with overflow an exception
could lead to the termination of the computation. Hence the
specification of a numeric computation should indicate if these
exceptions can arise. The specification of a routine should
indicate which of the following three cases hold with respect to
the NUMERIC ERROR and CONSTRAINT ERROR exceptions:

(a) The routine has been written so as to avoid
raising the exceptions.

(b) Local handlers have been written for the
exceptions so that these exceptions cannot be
propagated to the caller.

(c) The exceptions can indeed arise from a call of

the routine (the conditions should be stated).

Consider now the computation

X := 5QRT(A**2 + B'm2);

but this time considering the question of overflow. The safest
method is to avoid overflow by testing the values of A and B in a
similar method of that used for underflow:

-- - .r2



SL: ccnstant F := 2.0**(F'EMAX/2-1);
- calculate A and B
if APS(A) > SL or ABS(B) > SL then

A ::A/SL;
B B/SL;
X SQRT(A**2 + Bm*2) * SL;

elsif
-- other cases

end if; (*1)

An alternative strategy is to write a handler for the
NUMERICERROR exception and only in this case, scale for a large
value. This is not to be recommended in general because it is
machine dependent. The raising of the NUMERIC ERROR exception is
not guaranteed and indeed, on machines which allow computation
with values representing infinity, the exception might never be
raised.

A user can declare subtypes of a type (or subtype). Unlike a type,
a subtype is potentially dynamic in its characteristics. Consider

type F is digits 5;
X:F := F(READFROMDEVICE);
subtype TF is range 0.0 ..X;

Then the range of values that the subtype TE can have may vary
from one execution of these declarations to another. On the other
hand, the properties of F remain the same since the expression
after 'digits' is a static integer expression.

Subtypes of real types have both advantages and disadvantages in
Ada. Obviously, it is useful to place bounds on values and have
these bounds checked by the system as both a documentation aid and
also to improve the reliability of the software. Unfortunately,
the checking overhead on every assignment to variables of subtype
TF is not insignificant. The check is necessary since the program
is required to raise the exception C^.4STRA7N7 ERROR if the range
is violated. The programmer can suppress the checking by means of
a pragma, but this defeats the object of the facility. Hence
subtypes with a real range constraint must be used with care.

Subtypes can also be used to Indicate a need for less accuracy
than that specified by the type definition. For instance:

subtype SF is F digits 4;

or just against an object

(01) Again, this example is illustrative only, and section
10 gives a realistic example.



- 13 -

Y: F digits 4;

For a subtype, the model numbers are reduced by a corresponding
reduction in the mantissa length, while keeping the exponent range
the same. Hence this would mean a binary mantissa length of 14
places (3 less than F). This means that SF'LARGE is only a very
small amount less than F'LARGE corresponding to losing three i's
at the least significant end of the binary mantissa. Note that
SF'SMALL = F'SMALL.

Since compilers must handle objects of a subtype in effectively
the same way as objects of the type, it is unlikely that compilers
can take much advantage of the reduced precision of a subtype.
Hence the advantages of subtypes just giving an accuracy
constraint are minimal. Since there is no checking for accuracy
constraints at run-time, there is no run-time penalty.

Exercises

If F';IGITS = 2*G'DIGITS, does F'MANTISSA = 2*G'MANTISSA?

What is the largest positive value X:F such that X does not
overflow and 1.0/X does not underflow?

5. The predefined floating point operations

For every floating point type, a conventional set of predefined
operations are available as follows:

single operand + no operation
- change sign

two operands * multiplication
(of the same floating point type) / division

+ addition

subtraction

single parameter ABS( ) absolute value

Each of these operations yields a result which is of the same type
as the operands. The description of the error bounds and the
circumstances under which the exception NUMERIC ERROR can occur
can now be given in detail (see 4.5.8 of manual), by means of the
following steps:

1. For each operand, a model interval of the
appropriate type or subtype is obtained.

2. The mathematical operation is performed on the
model intervals, obtaining a new interval.

1!



3. The interval from the last step is expanded. ifnecessary, to a model interval.

The model interval obtained from this last; step bounds the
accuracy of the operation.

Consider the computation of X/Y; X,Y:F and X:15.O and Y=3.0. Both
X and Y are model numbers (as are all small integers). Hence the
two model intervals obtained from step I are just the two single
values. Step two yields the mathematical result 5.0. Now step 3
gives the model interval consistingof this single value, since
5.0 is also a model number of type F. One can clearly see from

this that computations involving small integer values and giving
small integer values are exact.

Consider now a slightly more realistic example of X'1, X,Y:F and X
0.1 and Y = 10.0

Then X is in model interval 16#0.!9999#..16;O.1999AVf
and Y is the model number 16#0.A#EI

Step 2 then gives the interval 16#O.FFFFA#..161.CD004#
Step 3 then gives the model interval 16#0.FFFF3#..16#i.00O1#

If the programmer had written 0.1*Y in his program, then 0.1 is

converted to the type F by the compiler and hence the same error
analysis applies. Note that the resulting bounds are approximately
symmetric about the correct result, although some actual machines

may produce results with these bounds but with a bias.

Consider another example of X+Y, X,Y:F with X=1.0 and Y:?'SMALL.

Then the interval at step 2 is the single value 1.0 + F'SMALL but

this is widened to the model interval ..C .. 1.0 + FEPSILON. This

analysis assumes that F'SMALL < F'EPSILON which is a consequence
of fixing the exponent range in relation to the mantissa length.

One situation has not been detailed. In steps 1 and 3 above, it
may be impossitle to form a model interval because a value exceeds
F'LARGE in absolute value. In this case, the interval is said to
overflow. When this happens, the NUMERIC ERROR exception may be
raised. It need not be raised because tne machine can handle
larger values adequately or because no indication is given by the
hardware. Because these different circumstances cannot be
distinguished, portable software cannot rely upon the
NUMERIC ERROR exception.

One other operation is available for floatirg point which i3
irregular since the operands are of different types. This is the
exponentiation operator written as ** The left nand operand is
any floating point type and the right hand operand is any integer
type. The result is of the same type as the left hand operand. 7he
operation gives the result of repeatedly multiolying the .eft hand
operand by itself for a positive exonent. The numoer of
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multiplications being one less than the value of the right
operand. A negative exponent gives the inverse of the positive
expoent value. Hence:

X 002 is equivalent to X * X
X "*(-2) " 1.0/(X'X)
X) * 1 to X
X*'o ,, 1.0

Hence the semantics of this operation are defined in terms of the
multiplications involved. The compiler can reduce the number of
multiplications by calculating X**4 as (X*X)*(X*X) rather than

(X'X)*X)'X. This gives a faster computation for large values of
the exponent but does not give (in general) more accuracy.

The remaining operations on floating point operands are more
regular than ** but give a BOOLEAN result. These are the
relational operators. All six relational operators are available
although they must be used with caution, as we shall see.

In comparing two values, everything is straightforward .f the two
values are not approximately equal and both are in range (ie
between - F'LARGE and F'LARGE). However, if the two values are
nearly equal, one has a potential problem. Under such
circumstances, the result will depend upon the actual accuracy of
the hardware. The precise formulation of this again depends upon
the use of model intervals as follows:

Firstly, the appropriate model intervals are constructed for each
operand as in the case of the other operations. Then one of five
cases determines the result:

(a) The intervals are disjoint: the mathematical result

is obtaired
(b) Each interval is the same single model number: the

mathematical result is obtained

(c) The two intervals intersect in a single model number:
either the exact result is obtained or that of comparing
one operand with itself

(d) The intervals have more than one number in common: the
result is implementation dependent.

(e) One of the two intervals overflows: the result is again
implementation dependent, but the NUMERICERROR exception
can be raised (although it need not).

'A5i
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These cases are easily illustrated by means of a table with type F

of five digits again.

X op Y case result

0.1 10.1 (a) mathematical result

F'SMALL F'SMALL (b) mathematical result

0.1 0.1+F'EPSILON/8 (c) (Intersect at 16#0.1999A#)

mathematical result or
0.1 op 0.1 (=Y op Y)

0.1 0.1+F'SMALL (d) implementation defined

F'LARGE -F'LARGE+1.0 (e) implementation defined or
NUMERICERROR

0.1 0.1 (d) implementation defined (1)

Exercises

With A, B, C:FLOAT; (I

Does
(A + B) + C L A + (B + C)?
A + B = B + A?

What is wrong with the following?
A + 12
24*B
C**2.0?

6. Derivation from the hardware types for floating point

As explained so far, it would appear that an implementation would
have to provide a large number of distinct types for digits N.
N=1..30 (say). However, as is well known, machines typically have
only one or two hardware types. We would appear to have a problem.
However, as defined, an accuracy of N digits can be implemented
with a hardware type having N or more digits of accuracy. Hence,
given a machine with two hardware types of 10 and 20 digits
accuracy, all the types of accuracy <= 10 would be handled with 10
digits, and the ones with more than 10 and less than or equal to

('1) It might seem odd that 0.1=0.1 is not necessarily true.
The reason is that many machines perform calculations with
more accuracy than results can be stored in main memory.
This is the so-called overlength accumulator. Hence 1.0/10.0
would give more accuracy than 0.1 stored in main memory,
giving the unexpected false to 1.0/10.0 0.1.
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20 digits with 20 digits of accuracy. The vital fact which permits
this is that the model numbers for accuracy of digits N are model

numbers for all larger accuracies.

The hardware types have conventional names, namely SHORT FLOAT,
FLOAT and LONGFLOAT. Of course, if there are only two hardware
types, the names actually in use will depend upon the
implementation. A valid Ada system could have no such types if the
target hardware provides no approximate facilities. Assuming that

floating point is provided, then type FLOAT should be available.
Hence, if one is not concerned with control of accuracy for small
amounts of code, then one can just use the type FLOAT. Direct use
of the hardware types is not to be recommended since it is clearly
machine dependent. However, if it is necessary to implement basic
software effectively to augment the hardware, then such machine

dependence is needed. Note that the attributes of FLOAT
(SHORTFLOAT and LONGFLOAT) characterise the machine.

Gi':en

type F is digits D;

such that F is implemented by the hardware type FLOAT, we say that
F is derived from FLOAT which is written in full as

type F is new FLOAT digits D;

The full form is not appropriate in most cases, since on another
system F could be implemented by SHORT FLOAT. Hence the short form
of declaration is to be preferred to increase portability. Even
with the long form, F'DIGITS = D and this is not necessarily equal
to FLOAT'DIGITS. Given either form of declaration, it is
occasionally necessary to access the characteristics of the

implemented type. This can be done by means of the notation

F'B,,SE'DIGITS meaning FLOAT'DIGITS etc.

The advantage of the 'BASE notation is that it is possible to
exploit the additional fortuitous accuracy provided by the

implementation. Consider for instance the summing of a series T(I)
until convergence is obtained:

SUM := 0.0;
while ABS(T(I)) > F'EPSILON 0 SUM loop

SUM : SUM + T(I)
I :I I

end loop;

As written it will stop summation appropriate to the declared
properties of F. However, on a particular machine more accuracy
might be obtained by writing F'BASE'EPSILON - going further than
that would be pointless. Of course, a numerical analyst would sum
such a series from the smallest term upwards, but the principle

'$3



remains the same.

Exercises

What is the relationship between F'DIGITS and F'BASE'DIGZTS?

What is the relationship between F'LARGE and F'BASE'LARGE?

If F'DIGITS = G'DIGITS does F'BASE'DIGITS = G'BASE'DIGITS?

7. Fixed point data types

With fixed point data types, the user specifies the maximum
acceptable absolute error bound. It is also necessary to specify
the total range of values that must be covered, since the range
and the error bound are required to determine the representation
of values. A fixed point data type has the form:

type FX is delta D range L .. U;

where the D, L and U are static real expressions. All three values
can be accessed as attributes of the fixed point type:

D = FX'DELTA, the absolute error bound,
L = FX'FIRST, smallest value of the type,
U = FX'LAST, the largest value of the type.

The type definition, together with a possible representation
specification determines the set of model numbers of the type. The
model numbers of the type are integer multiples of a value called
the actual delta, which is an attribute of the type

(=FX'ACTUALDELTA). This value is smaller than or equal to
FX'DELTA so that values can be represented to within the accuracy
specified. The range of integer values for the model numbers must

be sufficient to be within FX'DELTA of both L and U. In an
analogous way to the mantissa for floating point, the integer
multiple (including the sign) is assumed to have a total range of
-2**N+1.. 20*N-1 for some N. Hence to summarise, the model numbers
are:

sign * multiple * FX'ACTUALDELTA

where 0 <= multiple <= 2 *0 N - 1 (for some N).

There are some essential differences here between fixed point and
floating point. In floating point, some values such as 1.0 are
always model numbers. This is not the case with fixed point. The
value 1.0 could be less than FX'ACTUAL DELTA and in consequence
represented as 0.0. Conversely, 1.0 c~uld exceed the range of

't. values of the type and hence use of such a value could raise
CONSTRAINT ERROR. In general, unless a representation
specificatfon has been given which explicitly states the value of
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ACTUAL DELTA, the model numbers are unknown. Hence one cannot
assume that certain values, such as powers of two which are in
range, will be represented exactly.

Let us now consider a practical example. The need is to process
data which has an observational error of f.01 and a range of 0.0
to 100.0. To ensure the ability to hold negative values, the type
definition could be

type F is delta 0.01 range -100.0 .. 100.0;

A typical implementation could then choose a power of two for the
ACTUAL DELTA. This could be 1.0/128 or a smaller power, depending
upon the word length of the machine. In this case, assume that
F'ACTUAL DELTA = 1.0/128. Then the model numbers are multiples of
thris value to a limit which must be at least within the range
-100.0 * 0.01 .. 100.0 - 0.01. Since the multiples are a power of
two. the model numbers are:

M * 1.0/128 where -20*14 < M < 2'*1.

Hence the largest model number is 128.0 - 1.0/128. This model
number is outside the range of the type and in consequence cannot
be assigned to values of type F.

Ordinarily, the ACTUALDELTA value is choosen by the compiler, the
only constraint being that it must be less than or equal to the
delta for the type. In a respresentation specification, the user
may specify the ACTUAL DELTA value. By such a specification, the
representation of values can be constrained to conform to external
requirements. For instance, if an analogue to digital converter
from a camera places values in the memory of the computer, it is
important that the Ada program should use the same representation.
Consider the case when values 0 to 127 are input in binary, but
these are regarded as fractions of unit intensity from 0.0 to
127.0/128. Then one might have:

type INTENSITY is delta 1.0/128 range 0.0 .. 127.0/128;
for INTENSITY'ACTUAL DELTA use INTENSITY'DELTA;

for INTENSITY'SIZE use 7;

Note that -1.0/128 is a model number of the type but that it
cannot be stored in values because of the range constraint and in
consequence, the sign is not needed in the representation.

As a further example of a representation specification, consider
handling a type analogous to DURATION in Ada ie, timing intervals.
The obvious representation is in clock ticks so that the
ACTUAL. DELTA value might be 1.0/60 seconds. The programmer would
wish to work in seconds to avoid changing the program to work in
Europe (with 50 cycle mains supply). Hence one might have:

, __ J I .. . .l.. . .S 4. . .. . = - - =
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type DURATION is delta 1.0/60 range -24.0 .. 24.0;
for DURATION'ACTUALDELTA use DURATION'DELTA;

The special attributes of a fixed point types are as follows:

F'DELTA: A real literal value equal to the value of
the expression after the 'delta'. In this case the
value is 0.01.

F'ACTUAL DELTA: The real literal value used by the
implementation as the constant for the multiples
which give the model numbers. In this case the
value is 1.0/128 = 0.0078125.

F'BITS: This is the number of bits needed to
represent the unsigned model numbers. In this
case, 7 bits is required before the point and 7
bits after making 14 in all, ie F'BITS=14. The
value is that of the integer literals (see section

9).

F'LARGE: The largest model number of the type F. In
this case the value is 128.0 - 1.0/128 =

127.992175. The value has the same type as that of
real literals. In general, one has
F'LARGE = (2eeF'BITS - 1) F'ACTUALDELTA.

Subtypes of fixed point types can be declared explicitly or
implicitly by giving an accuracy constraint on the declaration of
a variable. In an exactly analogous way to floating point, there
is no run-time check for an accuracy constraint for fixed point.
Consider:

subtype SF is F delta 0.02;

Note that the range constraint is not needed since the range of
values is determined from the type definition (-100.0 .. 100.0 in
this case). This subtype definition means that the set of model
numbers is correspondingly reduced by the value SF'ACTUAL DELTA
being a binary power multiple of F'ACTUAL DELTA. In this case,
with F'ACTUAL DELTA = 1.0/128, SF'ACTUAL _DELTA could be 1.0/64.
The implemenation need not reduce the- model numbers for a
subtype. For this reason, it is not permitted to set the
ACTUALDELTA for a subtype in a representation specification.
Hence the only action required by the compiler for the above
subtype declaration is to check that the expression after delta
has a value greater than or equal to F'DELTA. If an implementation
does reduce the model numbers for a subtype, then the values
SF'BITS and SF'LARGE reflect the value of SF'ACTUALDELTA.

/Ir.
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Exercises

Given: type FX is delta D range L U;

(a) Are D, L and U model numbers?

(b) Can the range constraint be omitted?

(c) If L < 1.0 < U, is 1.0 a model number?

What is wrong with the following?

(d) type FD is delta 0.01 range 0.0 .. SQRT(2.0);

(e) type FE is delta 0.01 range 0 .. 10;

(M) type FF is delta 10.0 range 0.0 .. 100FFt DELTA;

8. The predefined fixed point operations

With floating point, the specification of each operation was
easy since with the exception of **, the type of the operands and
the result was the same. It is easy to see that in general this is
not possible with fixed point. The rescaling of intermediate
results is done by explicit type conversion. This resealing is
only essential on multiplication and division since the magnitude
of values only changes significantly with these operations.

The operations which do not involve rescaling are tabulated below.
Here X is of any fixed point type and I of any integer type, the
result always being the same as X.

Example meaning

+ X no operation
- X change sign
X + X addition

X - X subtraction
I X K equivalent to repeated addition
X * I equivalent to repeated addition
ABS(X) absolute value
X / I division without rescaling

Now consider some examples of the calculation of error bounds for
computation using the same example type F as above:

type F is delta 0.01 range -100.0 .. 100.0;

Given

ONE : F :: 1.0;
then it is not safe to assume that ONE is represented exactly

27
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unless it is known that F'ACTUAL DELTA is a submultiple of 1.0. An
implementation is free to truncate or round a constant on
conversion to F. and in consequence all one can say is that
ABS(ONE-1.0) <= F'DELTA. To simplfy the remaining discussion,
assume that F'ACTUAL DELTA is 1.0/128, Then, of course, 1.0 is a
model number and therefore is stored exactly. Now consider

TENTH : F := 0.1;
Here the value is bounded by the model interval 12.0/128
13.0/128, and could be either of the two extremes or a value in
between. Now consider the expression 10TENTH. This is equivalent
to repeated addition and in consequence can yield any value in the
interval 120.0/128 .. 130.0/128. Of course, on a binary machine,
the expression will never yield 1.0 exactly since 0.1 has a
recurring binary representation.

The fixed point operations follow the same logic as for floating
point as far as the definition of error bounds is concerned. In
consequence, all of the operations above except, possibly,
division by an integer, will yield exact results for multiples of
F'ACTUAL DELTA assumming the result is in range. Since in some
cases, the implementation will not have values between model
numbers, this implies that all these operations are exact. In
fact, values between model numbers can only arise from division by
an integer, from constant, and type conversions from other types.
The nature of the inexact operation can be illustrated from

X: F 10.1;
Y: F :: X/2;

The X value is bounded by the interval 1292.0/128 .. 1293.0/128.
The Y value is then bounded by the interval 646.0/1 28 ..
647.0/128. Hence multiplication of Y by 2 will yield a larger
bounding interval than that of X. If, of course, one knew that X
was equal to an even multiple of F'ACTUAL DELTA, then Y := X/2;
and X := Y'2; would leave X unchanged. (*1) The model numbers for
an integer type in fixed point operations are just the integers
themselves.

The rescaling operations are general fixed point multiplication
and division. The operands are of any, possibly distinct, fixed
point types. Consider the types:

type F is delta 0.01 range -100.0 .. 100.0;
type G is delta 1.0 range -10000.0 .. 10000.0;

Given F1,F2:F, consider the product F1 * F2. This product is very
likely to overflow the range of F and hence in general it cannot
be considered to be of type F. Using the intuitive concept of
formats, it is quite clear that a product has a different format.

(61) If the statements Y:=X/2: X:=Y 02; appeared in a
program, compiler optimization could give the exact result
in all cases (since CONSTRAINTERROR cannot arise,
optimization is safe).

Js-
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On the other hand, given GI:G, it is clear that one should be able
to assign the product to GI without overflow. In Ada, the product
is regarded as Universal Fixed - a hypothetical type of
arbitrarily high accuracy. This type does not have an Ada name so
that no variables can be declared of this type. All that can be
done with such a product is to convert it into another type. In
this case, one can write:

Gi := G(F1 * F2);
To calculate error bounds, the operation is regarded as a whole:
ie calculating the product and the conversion. Assuming that
F'ACTUAL DELTA = 1.0/128 and G'ACTUAL DELTA = 1.0, then one has:

F1 1.0 10.0 10.1

F2 2.0 0.1 10.1

bounds on F1
1.0..1.0 10.0..10.0 1292.0/128..1293.0/128

bounds on F2
2.0..2.0 12.0/128..13.0/128 1292.0/128..1293.0/128

bounds on F1*F2
2.0..2.0 120.0/128..130.0/128 101.88 .. 102.04

bounds on G1
2.0..2.0 0.0 .. 2.0 101.0 .. 103.0

In this case, the error bounds are about 2 units in the resulting
type. Clearly, if the operands have high accuracy as well as the
resulting type for the product, then no accuracy need be lost.

Fixed point division works in the same way with the requirement to
convert to result of the operation. Naturally, if the right hand
operand has a small value, then substantial inaccuracies can
occur.

Exercises

(a) Given a fixed point type with a range of positive values only,
can the finction ABS have any use?

(b) Should an implementation limit the smallness of the delta
value?

(c) What purpose does the 'DELTA value serve if errors are bounded
by multiples of 'ACTUALDELTA?

(d) Given type FD is delta 0.01 range -10 .. 1.0; and assuming
FD'ACTUAL DELTA 1.C/128, and X 0.1, calculate the error bounds

-. -w1./-2 , an - -0.
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on: Y :2 0.6 + FD(O.2X) + FD(O.1*FD(X*X));

and on
Y := FD((FD(O.1X) + 0.2)*X) + 0.6;

9. Literal exoressions

In the preceeding sections one problem has been avoided,
namely, the type of a numeric literal. It has been noted tnat
literals are implicitly converted to the type required by the
context. This implicit conversion can lose accuracy and can also
raise the exception CONSTRAINT ERROR if the value exceeds the
implemented range of the type. @

Integer literals are regarded as being of type Universal Integer
and real literals of type Universal Real. The names of these types
are not available as Ada names and in consequence, cannot be used
to declare variables etc. However, it often happens, especially
with fixed point working, that there are relationships between
literal values which cannot be easily expressed be means of typed
expressions. Ada therfore allows for the evaluation (by the
compiler) of literal expressions. Hence, wherever Ada permits an
integer expression 1I1 (say), can be written. Each literal 1 is of
type Universal Integer and the " " is evaluated by the compiler
independently of the context. Consider the following:

type INT is range -10 .. 10;
TEN: constant INT :: 10;
THOUSAND: constant :2 1000;
I : INT;

I := TEN; - OK
I : 1000 * TEN; - (1)
I :: THOUSAND - THOUSAND; - (2) OK I 0:;
I := THOUSAND - 1000; - (3)

In case (1). the a&%tions are as follows: 1000 is implicitly
converted to INT. the INT "0" operation is applied, the result is
checked for range, and lastly the assignment is performed. In this
case, the first step fails as 1000 is not within the range of the
type, and hence CONSTRAINT ERROR is raised.

In cases (2) and (3), the result is to assign zero to I since the
subtraction is that of Universal Integer which is performed by the
compiler (within an unbounded range).

Similar remarks apply to real literal expressions:

type F is digits 5;
RATIO: constant F := 3.14;

/£C o
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PI: constant 3.14159_26535;
F1 F;

F1 2.0 * PI; -- Universal Real multiplication

F1 := 2.0 * RATIO; -- Multiplication of type F

F1 := 1.0E200 - 10.0 0 I.CE199;
- Literal expression value 0.0
-- no overflow possible

Of course, with both Universal Integer and Universal Real, a

compiler will have some limitation in the size of values and
accuracy respectively. These limits should not be of any practical

significance and in consequence will be larger than any

implemented type available on typical target machines.

The type Universal Real is not strictly a floating point or fixed

point type but has the functionality of both. In consequence, all
the following operations are legal as illustrated by the number
declarations:

ADD: constant 1.0 + 3.0;
SUB: constant :: 6.0 - 8.0;
PLUS: constant +12.0;
NEG: constant : - 8.:
MULTI: constant := 2 0 3.0;

MULT2: constant :4 '.0 10;
MULT3: constant := 5.0 10.1;
DIVI: constant :: 10.0/2;
DIV2: constant :1 10.0/2.0;
EXP: constant :: 3.0 ** 2;
ABSI: constant ABS(6.0);

The relational oFerators are also available for Universal Real

giving the BOOLEAN result as usual. The semantics of these
operations is the same as that for the typed operations except

that the model intervals are smaller than any implemented real

type. Intuitively, one can envisage a compiler storing values in a
floating point type of high accuracy.

Exercises

Are the following literal expressions?

k (a) F'DIGITS + 1C
'b) FX'DELTA / '0.0
(c) FX'LAST - 0.1
(d) I/FX'ACTUAL. DELTA

/1/
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10. A floating point example, Blue's algorithm

Blue's algorithm [5) is for the calculation of the Euclidean
norm of a vector (ie square root of the sum of the squares of the
elements). It is a natural extension of the calculation of
SQRT(AO*2+B*2) which was used above. The algorithm is very
carefully written to avoid overflow and underflow and also to
guarantee the precision of the result. Hence it is a good example
of a high-quality algorithm (orginally written in FORTRAN). The
paper itself should be studied for the numerical analysis
involved.

The paper presents the algorithm in two forms: a mathematical
formulation using Greek letters and conventional notation; and a
formulation in RATFOR, a FORTRAN preprocessor. The major
differences between the RATFOR version and that for Ada below are
that the Ada version works for any implemented precision and does
not depend on an additional subroutine to set critial constants.
In Ada, these constants are model numbers and hence the definition
of the language guarantees that the values are set correctly from
the predefined attributes.

The identifiers used are those of the RATFOR implementation, but
in upper case. In practice, longer identifiers that show the
relationship to the mathematical formulation of the algorithm
would be preferable.

The function itself, called NORM must assume an appropriate
context for the types of its parameters and for the SQRT routine.
This context is:

type REAL is digits D;
type VECTOR is array (INTEGER) of REAL;
function SQRT(X: REAL) return REAL;

The body of the function can now be given. The main logic is to go
once through the vector accumulating three sums according to the
magnitude of each element. The three sums are then scaled as
appropriate to give the final answer.

function NORM(X: VECTOR) return REAL is

- calculate constants which depend upon REAL.
- Floor and ceiling functions of the paper avoided
- by using the truncation of integer division.
EBI: constant := (REAL'EMAX + 1)/2; - -(exponent of Bi)
B1 : constant REAL := 2.0 **(-EB1); - model number of REAL

EB2: constant := (REAL'EMAX - REAL'MANTISSA + 1)/2;
92 : constant REAL := 2.0 00 EB2;

ESIM: constant :z REAL'EMAX/2 + 1;
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SIM : constant REAL :: 2.0 *0 ESIM;

ES2M: constant := (REAL'E1AX + REAL'MANTISSA + 1)/2;
S2M : constant REAL := 2.0 *4 (-ES2M);
OVERFL: constant REAL := REAL'LARGE * S2M;

-- this value can be calculated by the compiler

RELERR: constant REAL := SQRT(REAL(REAL'EPSILON));
-- Conversion necessary as 'ESILON is a literal.
-- Note that this value must be calculated dynamically.

ABIG, AMED, ASML: REAL :: 0.0; - the three accumulators
AX: REAL;
N: constant INTEGER := X'LENGTH;

begin
-- size of array = 0 is not special case in Ada (unlike FORTRAN)
if N > 2**REAL'MANTISSA then

raise CONSTRAINTERROR; -- not clear how to handle this case
end if;
for J in X'FIRST .. X'LAST loop

AX := ABS(X(J));
if AX > B2 then

ABIG := ABIG + (AX * S2M)**2;
elsif AX < 81 then

ASML :: ASML + (AX * SM)**2;
else

AMED := AMED + AX**2;
end if;

end loop;
if ABIG > 0.0 then

ABIG := SQRT(ABIG);
if ABIG > OVERFL then

return REAL'LARGE; -- can't raise NUMERIC ERROR as well as
-- returning a result

end if;
if AMED > 0.C then

ABIG ABIG / S2M;
AMED SQRT(AMED);

else
return ABIG/S2M;

end if;
elsif ASML > 0.0 then

if AMED > 0.0 then
ABIG :: SQRT(AMED);
AMED :: SQRT(ASML)/SIM;

else
return SQRT(ASML)/SIM;

end if;
e se

return SQRTkAME); -- the standard path
end if;
if AB!G > AMED then

ASML :: AMED:



else
ASML ABIG;
ABIG AMED;

end if;
if ASML <= ABIG * RELERR then

return ABIG;
else

return ABIG * SQRT( 1.0 + (ASML/ABIG)002);
end if;
end NORM; - ('1)

The algorithm is not completely satisfactory in the sense that
although it will work for any real type, the algorithm uses only
the Ada properties of the type. By replacing each occurance of
'REAL by REAL'BASE, the algorithm would use the properties of the
implemented type. With such a replacement, there would only be one
effective version of the function for each of the hardware types.
Further ' improvements' can be made by exploiting specific
machine-dependent properties of the type (see section 13).

11. A fixed point example

A common requirement in fixed point is to mimic floating point
to conserve either time or space. The evaluation of a polynomial
is sometimes used to approximate a function. Such polynomials are
typically truncated power series which rely upon the decreasing
contributions from the higher order terms. Given:

Y :m A + B*X + C*X•*2 + D'X**3;
the most effective evaluation method is nested multiplication, ie

Y :v ((D*X + C)OX + B)*X + A;
As X is small, with floating point, the normalization on the
addition of A is the only source of rounding error. With fixed
point using a pure fraction as the data type, each partial product
can be calculated with minimal errors so that the resulting error
is again minimised. Note that performing the calculation in
polynomial fashion both involves more operations and is, in
general, less accurate.

To illustrate the use of fixed point for approximation, the
calculation of the sine and cosine functions is given from Cody
and Waite [6). It is assumed that floating point is expensive on
the target machine and therefore the major computation uses fixed
point. The algorithm illustrates a number of other features
including type conversion, literal expressions, integer type
definitions and conditional compilation. The algorithms given in
(6] include a number of options which would ordinarily be chosen
by the implementor. Some of the choices in this case are inserted
into the algorithm so that the compiler selects the necessary
code.

. (*1) Not yet tested with an Ada compiler
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In order to correspond to conventional usage, the routines SIN and
COS are coded for the type FLOAT. No assumptions are made about
the type except that integer and fixed point types are available
with sizes about the same as the mantissa length of the type
FLOAT.

The argument reduction is a difficult aspect of sine and cosine.
The constants C1 and C2 (whose sum is PI) are used for this in the
way recommended for a machine without guard digits on floating
point. The code illustrates that compiler "optimization" of
floating point can be very unsafe.

package SIN COS is
function SIN( X: FLOAT) return FLOAT;

function COS( X: FLOAT) return FLOAT;
end SINCOS;

package body SIN COS is
PI: constant := 3.14159_26535 89793_23846;
PI DIV 2: constant := PY/2;9
ONE DIV PI: constant := 1.0/PI;
SGN-POS- BOOLEAN;

Y: FLOAT;

procedure COMMONPART( X: FLOAT );

function SIN( X: FLOAT) return FLOAT is
begin
if X < 0.0 then

SGNPOS := FALSE;
Y :-X;

else
SGNPOS := TRUE;
Y := X;

end if;
COMMON PART(X);
return Y;
end SIN;

function COS( X: FLOAT ) return FLOAT is
begin
SGN POS := TRUE;
Y := ABS(X) + PI DIV_2;
COMMON PART(X);
return Y;
end COS;

procedure COMMON PART( X: FLOAT ) is
B: constant := FLOAT'MANTISSA;

. type INT is range 0 .. 4 2*(B/2);
YMAX: constant INT :: INT(PI*2"*(B/2)+0.5);

1A J-



N: INT;

Xl, X2, XN, F: FLOAT;
Cl: constant FLOAT := 8#3.1104#;
C2: constant FLOAT -8.9089_1020676153_73566_17E-6;
EPS: constant := 2.0 ** (B/2);

D: constant := 2.0 0* (-B);
type FR is delta D range -1.0 + D.. 1.0 - D;
G: FR;

begin
if Y >= FLOAT(YMAX) then

raise CONSTRAINT ERROR;
else

N :2 INT( Y * ONE DIVP1 );
XN :2 FLOAT(N);
if N rod 2 = 1 then

SGNPOS := not SGN_POS;
end if;
if ABS(X) /= Y then

XN := XN - 0.5; -- COS wanted
end if;
Xl :2 FLOAT(INT(ABS(X)));
X2 := ABS(X) - Xl;
F :2 ((Xl - XN*C1) + X2) - XN*C2;
if ABS(F) < EPS then

Y := F;
else

G FR(F/2.0);
G := FR(G * G);
if B <= 24 then

Y := FLOAT(
FR((

FR((
FR((

FR(O.00066 60872 ' G)
- 0.01267 67480) * G)

+ 0.13332_8-4022) * 0)
- 0.66666_62674) * G)

elsif B <= 32 then
Y 2 FLOAT(

FR((
FR((

FR((
FR((

FR(-0.00002 44411 867 * G)
+ 0.00070 46136 593) * G)
0.01269_81330 068) * G)

+ 0.13333_32915 289) 0 G)
0.66666_66643_530) ' G)

It
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elsif B <= 50 then
Y FLOAT(

FR((

FR((
FR((

FR((
FR((C

FR((
FR(-0.00120 76093_891E-5 ' G)

+ 0.06573 19716 1Q2E-5) G)

- 0.00002 56531 15784 674) ' G)

+ 0.00070 54673 00385 092) * G)

- 0.01269 8'126 86"862 404) * G)

+ 0.13333_33333_32414 7V2) * G)
0.66666_66666_66638_6T3) * G)

elsif B <= 60 then
Y FLOAT(

FR((
FR((

FR((
FR((

FR((
FR((

FR((
FR(O.00001 78289 31802E-5 

• G)

- 0.00125_22156_53481E-5) N G)

+ 0.06577 74038 64562E-5) G)
- 0.00002 56533 57361 43317) * G)

+ 0.00070 54673 7T779 91056) # G)
- 0.01269 84126 98369 17789) * G)

+ 0.13333 33333 33330 64050) * G)
- 0.66666_66666 66666 60209) ' G)

else
raise CONSTRAINTERROR;

end if;
Y :x F + F*R;

end if;

if not SGN POS then
Y := -Y;

end if;

end COMMONPART;

end SINCOS; -- (T)

----------------------------
(*1) Not yet tested with an Ada comoiler
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12. The complex data type - an example of generics

An essential difficulty with both fixed point and floating
point subroutines is that they can only be used with one type -
and in consequence one accuracy. Usually, the text of a subroutine
will be more general than this although when it is compiled, it
will be for a specific accuracy. The full generality of the source
text can be exploited by means of generics. The numeric types are
made generic parameters so that specific instantiations give any
specific accuracy (supported by the implementation).

As an example of generics, the package for providing complex data
types is used. This is very similar to the rational number package
given in the language reference manual (which does not use
generics).

generic
type REAL is digits >; -- matches any floating point type

package COMPLEX OPS is
type COMPLEX is record

RE, IM: REAL;
end record;

function "-" C X: COMPLEX) return COMPLEX;
function ABS( X: COMPLEX) return REAL;
function "+" ( X, Y: COMPLEX ) return COMPLEX;
function "-" C X, Y: COMPLEX ) return COMPLEX;
function "*" ( X, Y: COMPLEX ) return COMPLEX;
function "/" C X, Y: COMPLEX ) return COMPLEX;

end COMPLEXOPS;

The package body does not repeat the generic parameters, and could
be:

witb MATH LIB;
package body COMPLEX OPS is

function "-" C X: CCMLEX) return COMPLEX is
begin
return - X.RE, - X. IM );
end

function ABS( X: COMPLEX) return REAL is
A, B: REAL;
begin
if ABS(X.RE) > ABS(X.IM ) then

A := ABS(X.RE);
B :2 ABS(X.IM);

else
A :: ABS(X.IM);
B := ABS(X.RE);

end if;
if A > 0.0 then

.4r
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return A * MATH L-TB.S2RT(1.O + (/A)2);
el se

return 0.0:
end if;
end ABS;

function "+" ( X, Y: COMPLEX ) return COMPLEX is
begin
return ( X.RE + Y.RE. X.IM + Y.IM );
end "

function "-" ( X. Y: COMPI.EX ) return COMPLEX is
begin
return ( X.RE - Y.RE, X.IM - Y.IM );
end "-";

function ,, C X. Y: COMPLEX ) return COMPLEX is
begin
return ( X.REY. RE - IM4Y. I.

X.IM'Y.RE + x.REY.IM );
end ,, ,,;

function "/" C X. Y: COMPLEX ) return COMPLEX is
A: REAL Y.RE**2 + Y.!M*2;

begin

return ( (X.RE*Y.RE + X.IMOY.IM) / A,
(X.Ih'Y.RF - X.RE*Y.IM) / A );

end "/""

end COMPLEX OPS; -- (*I)

13. Portability Issues

The Ada language does not aim at complete portability. To do so
would mean that it wouild be lmpossiblp to write machine-specific
code such as that illustrated in soction 11. Also, the differences
in actual hardware does not ,nake portability achievable at
acceptable costs. Ultimately, Ilhi frstlng point addition of a
machine is defined by the miovocode, which cannot even be

characterized by a few simple parameters. Hence programmers nee-i
to be aware of potenti.-1 portabii ty problems so that code is not
needlessly machine-specific.

Integer Types. 6J7
New types should be introdurtid for reasons of abstraction andI
modularization. It is particularly important to introduce new

integer types in handling large ranges ( > 16 bits) since these
may not be supported, ,r will hAv- .morip 4igniflcant penalty. If a

large integer type is only used i; one small routine, then
recoding Is much simpler thr.n if' NTEFR is used thoughout (and

(01) Not yet tested with -n Aea ,'ompiler

'a
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only during execution it is found that one routine assumes
INTEGER'LAST > 2"'16).

A trap for the unwary is that intermediate results in an
expression of type T can exceed the range T'FIRST..T'LAST. In
consequence, portability is not assured since on other hardware T
may correspond exactly to the range of a hardware type. Diagnostic
compilers can trap this condition and cause NUMERIC ERROR to be
raised at run-time. Of course, the values for which NUMERIC ERROR
is raised is again dependent upon the hardware. On some machines,
calculations are done to 32 bits but stored values are 16 bits
giving the overlength accumulator problems analogous to floating
point.

Floating Point Types.
Similar difficulties arise with the handling of NUMERIC ERROR for
floating point. The actual range of the implemented type is likely
to exceed the range -F'LARGE .. F'LARGE due to having a larger
exponent than that guaranteed by Ada. A machine may have
'infinite' values such as those of the IEEE standard [7], in which
case substantial care is necessary to ensure such facilities are
avoided or used in a portable fashion. For this reason, the values
F'FIRST and F'LAST should be avoided. It must be remembered that
the NUMERICERROR exception might never be raised.

Explicit use of the type FLOAT should je restricted to small
sections of code. It would be reasonable io assume that FLOAT has
5 digits of precision. Of course, some machines may not have any
floating point. Apart from the use as a tool for abstraction, new
types should be introduced when different accuracies are needed.
The use of accuracy constraints in subtypes should only be
regarded as a comment, rather than attempting to rely upon
sophisticated optimization.

A set of machine specific attributes for flcating point is
available which, if used, is unlikely to give portable code. For
tnis reason, these attributes have names beginning with MACHINE_
-hey are as follows:

F'MACHINERADIX. This is the radix used to represent
machine values. To support the Ada model of
floating point properly, it must be a power of 2.
It is 16 for the IBM 360/370 and 2 for the IEEE
standard.

F'MACHINE MANTISSA. This is the mantissa length in
radix units. It is at least conceivable that there
is not a whole number of radix places in the
mantissa, although the value is defined to be an
integer.

F'MACHINE EMAX. The maximun exponent value in radix
units. (So F'MACHINERADIX * F'..,AH .i1E E' AX is

'7,
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approxi:-ately -n2 largist machine runber.)

F'MACHINE EIN. The minimum exponent value in radix
un its.

'ACHINE ROUNZ. 4 SOOLEVA value which is true only
f all floating point operations perform true

rounding, such as tnat of the IEEE standard.

F'MACHINE OVERFLOWS. A BOOLEAN value which is true
only if the NUMERIC ERROR exception is raised
whenever the result of an operation cannot be
represented with the usual precision due to
exceeding the range of machine values.

':;ih -are, the ', ACHINE RADIX value can be used to overcome the
Problem of 'wobbling precision' and the attribute
MACHINE OVERFLOWS can be used to provide an alternative coding
which relies upon the NUMERIC ERROR exception. Note that one
cannot easily determine the largest and smallest positive machine
values due to the differences between i's and 2's complement
arithmetic, underflow etc.

Fixed Point Types.
A similar remark applies to fixed point about not relying upon
values outside the range -LARGE..LARGE. A program can also depend
upon the arithmetic of the machine. With a pure fraction, on a 2's
complement machine, -1.0 is a machine number but 1.0 is not,
whereas neither are machine values on a l's complement machine.
Although it is highly likely that the default value for
ACTUAL DELTA wil be a power of two, the program should not rely
upon this.

In the same way that one should not rely upon the existance of
floating point with a large number of digits, so with fixed point
one should not expect very high precision (exceeding 32 bits,
say).

Fixed point types have the attribute FX'MACHINE ROUNDS which is
true only if all the operations perform true rounding.
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Answers to exercises

Page 5 (section 2)

16#FF# = 15 * 16 + 15 240 + 15 255
4#1.01#E2 = 4#101.00 = 4.0 + 2 + 1.0 = 17.0

3#0.1# = 3.0 (-1) 0.33333 (no exact dec ma, euivalanot
8#0.1# = 8.0 * (-1) = 0.125
16#0.81/ = 3" 16.0 *" (-0) = 0.5

16#0.999999...# =,9.0/(16-1) = 3.0/5 = C.6
3. 14 -- no underscore after decimal point
L# 0.1#2 -- nc underscore after sharp
16#FFOE-I -1 not integer valued and no deciMOl noint
8#0.9# -- 9 not a radix character.

Page 7 (section 3)

(a) Next rodel nu-ber above 1.0 is 1640 .07A ' 2
=16#1 .0302#

(b) Next model number below 1.1 13 1 i C.

(c) The ratio is 2.0 winch is tt.e racix.

The rational numcers which cannot le r r....... to. exactly --re thcze
with recurring ztnary representation.

?a;e 13 'section
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Not necessarily, If F'DIGITS = 14 then F'MANTISSA =47 but
G'DIGITS = 7 gives G'MANTISSA = 24,

X = F'LARGE since 1.0/F'LARGE > F'SMALL and hence does not
unoerflow. Of course, the actual machine may permit larger and
smaller values without over/underflow.

Page 16 (section 5)

(A+B)+C=A+(B+C) is not necessarily true since floating point
addition is not associative. For values A, B and C which are model
numbers such that the true sum (and partial sums) are model
numbers, the result will be true.

A.+3=BA is u-ally true cut is not necessarily so. A+B could be
calculated in the accumulator of the machine and then stored while
B+A is evaluated in the accumulator. The comparison may then fail
if the accumulator gives more precision than that of stored
values.

A + 12 -- 12 is not real, must write A + 12.0
24 * B -- 24 is not real, must write 24.0 * B
C ** 2.0 -- exponent must be integer, hence should be C*02

Page 18 (section 6)

F'SASE'DIGITS >= F'D:GITS
F'BASE'LARGE >= 7'LARGE
Jot necessarily, since if the short form is used (without new).

the compiler is free to choose the hardware type which need not be
the same.

Page 21 (section 7)

(a) Nct necessarliy, but there must be model numbers close to L
and U.
,b) No. it is required to determine the representation.
Cc) Not necessarily, if the actual delta is not a submultiple of
1.", then 1.0 will not be a model number. The actual-delta value
could exceed 1.0.
(d) The range must be static, hence the call of SQRT is not
per-,itted.
'e) The range is a real range ani hence should read "0.0 ..
:f .-he attribut-. 'DELTA is not defined until the end of tne type
leinition and nence cannot be used within the definition.

e2'2 (section 5:

'a' Yes, values of me type always include negative values since
.. l numbers can te negative. These negative values nay cause

:..S.RA:. ERIFO? on assignment. Tf the si , of a small value is in
, ABS can -e .3e: tefore assignnent.

,; 3
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(b) There should be no practical lower limit. An implementation is
likely to limit the number of model numbers for a type so that
values can be held in one or two words. Hence if the delta value
is very small, the L and U values should be also.
(c) Since 'DELTA >= 'ACTUALDELTA, the bounds can be expressed in
terms of DELTA (ie the type definition).
(d) In both cases, 0.6 is of type FD and bounded by 76.0/128
77.0/128. The constants 0.1 and 0.2 are Universal Real and in the
first case are held to the relative accuracy of FD ie, 7 bits.
This implies that 0.1 is bounded by an interval of width
1.0/(80128) and 0.2 by an interval twice that width.

CASE 1
0.6 bounded by 76.0/128 .. 77.0/128
FD(O.2*X) bounded by 2.0/128 .. 3.0/128
P=FD(X*X) bounded by 1.0/128 .. 2.0/128
FD(0.1*P) bounded by 0.0/128 .. 1.0/128
Y bounded by (76.0+2.0+0.0)/128 .. (77.0+3.0+1.0)/128

78.0/128 .. 81.0/128

CASE 2
Q=FD(0.1*X) bounded by 1.0/128 .. 2.0/128
R=Q + 0.2 bounded by 26.0/128 .. 28.0/128
T=FD(R*X) bounded by 2.0/128 .. 3.0/128
Y=T0.6 bounded by 78.0/128 .. 80.0/128

The effectiveness of nested multiplication increases with the
number of terms, as can be seen from the relative error of the
higher order terms.

Page 25 (section 9)

a) Yes, F'DIGITS is Universal Integer.
(b) Yes, FX'DELTA is Universal Real.
(c) No, FX'LAST is of type FX.
(d) No, UniversalInteger/UniversalReal is not permitted.

= - 71,_
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